- Seattle WA, US Gur Kimchi - Bellevue WA, US Allan Ko - Seattle WA, US
International Classification:
B64C 27/57 B64C 39/02 G01H 1/00
Abstract:
Sounds are generated by an aerial vehicle during operation. For example, the motors and propellers of an aerial vehicle generate sounds during operation. Disclosed are systems, methods, and apparatus for actively adjusting the position of one or more propeller blade treatments of a propeller blade of an aerial vehicle during operation of the aerial vehicle. For example, the propeller blade may have one or more propeller blade treatments that may be adjusted between two or more positions. Based on the position of the propeller blade treatments, the airflow over the propeller is altered, thereby altering the sound generated by the propeller when rotating. By altering the propeller blade treatments on multiple propeller blades of the aerial vehicle, the different sounds generated by the different propeller blades may effectively cancel, reduce, and/or otherwise alter the total sound generated by the aerial vehicle.
Selecting Propellers For Performance And Noise Shaping
Aerial vehicles may be operated with discrete sets of propellers, which may be selected for a specific purpose or on a specific basis. The discrete sets of propellers may be operated separately or in tandem with one another, and at varying power levels. For example, a set of propellers may be selected to optimize the thrust, lift, maneuverability or efficiency of an aerial vehicle based on a position or other operational characteristic of the aerial vehicle, or an environmental condition encountered by the aerial vehicle. At least one of the propellers may be statically or dynamically imbalanced, such that the propeller emits a predetermined sound during operation. A balanced propeller may be specifically modified to cause the aerial vehicle to emit the predetermined sound by changing one or more parameters of the balanced propeller and causing the balanced propeller to be statically or dynamically imbalanced.
Propeller Blade Indentations For Improved Aerodynamic Performance And Sound Control
- Seattle WA, US Gur Kimchi - Bellevue WA, US Allan Ko - Fremont CA, US
International Classification:
B64C 11/18 B64C 27/46 B64C 39/02
Abstract:
Sounds are generated by an aerial vehicle during operation. For example, the motors and propellers of an aerial vehicle generate sounds during operation. Disclosed are systems, methods, and apparatus for actively adjusting the position of one or more propeller blade treatments of a propeller blade of an aerial vehicle during operation of the aerial vehicle. For example, the propeller blade may have one or more propeller blade treatments that may be adjusted between two or more positions. Based on the position of the propeller blade treatments, the airflow over the propeller is altered, thereby altering the sound generated by the propeller when rotating. By altering the propeller blade treatments on multiple propeller blades of the aerial vehicle, the different sounds generated by the different propeller blades may effectively cancel, reduce, and/or otherwise alter the total sound generated by the aerial vehicle.
Selecting Propellers For Performance And Noise Shaping
Aerial vehicles may be operated with discrete sets of propellers, which may be selected for a specific purpose or on a specific basis. The discrete sets of propellers may be operated separately or in tandem with one another, and at varying power levels. For example, a set of propellers may be selected to optimize the thrust, lift, maneuverability or efficiency of an aerial vehicle based on a position or other operational characteristic of the aerial vehicle, or an environmental condition encountered by the aerial vehicle. At least one of the propellers may be statically or dynamically imbalanced, such that the propeller emits a predetermined sound during operation. A balanced propeller may be specifically modified to cause the aerial vehicle to emit the predetermined sound by changing one or more parameters of the balanced propeller and causing the balanced propeller to be statically or dynamically imbalanced.
Selecting Propellers For Performance And Noise Shaping
Aerial vehicles may be operated with discrete sets of propellers, which may be selected for a specific purpose or on a specific basis. The discrete sets of propellers may be operated separately or in tandem with one another, and at varying power levels. For example, a set of propellers may be selected to optimize the thrust, lift, maneuverability or efficiency of an aerial vehicle based on a position or other operational characteristic of the aerial vehicle, or an environmental condition encountered by the aerial vehicle. At least one of the propellers may be statically or dynamically imbalanced, such that the propeller emits a predetermined sound during operation. A balanced propeller may be specifically modified to cause the aerial vehicle to emit the predetermined sound by changing one or more parameters of the balanced propeller and causing the balanced propeller to be statically or dynamically imbalanced.
Propeller Blade Indentations For Improved Aerodynamic Performance And Sound Control
- Seattle WA, US Gur Kimchi - Bellevue WA, US Allan Ko - Seattle WA, US
International Classification:
B64C 11/18 B64C 27/46 B64C 39/02
Abstract:
Sounds are generated by an aerial vehicle during operation. For example, the motors and propellers of an aerial vehicle generate sounds during operation. Disclosed are systems, methods, and apparatus for actively adjusting the position of one or more propeller blade treatments of a propeller blade of an aerial vehicle during operation of the aerial vehicle. For example, the propeller blade may have one or more propeller blade treatments that may be adjusted between two or more positions. Based on the position of the propeller blade treatments, the airflow over the propeller is altered, thereby altering the sound generated by the propeller when rotating. By altering the propeller blade treatments on multiple propeller blades of the aerial vehicle, the different sounds generated by the different propeller blades may effectively cancel, reduce, and/or otherwise alter the total sound generated by the aerial vehicle.
Propeller Blade Leading Edge Serrations For Improved Sound Control
- Seattle WA, US Gur Kimchi - Bellevue WA, US Allan Ko - Seattle WA, US
International Classification:
B64C 11/18 B64C 11/20 B64C 11/00
Abstract:
Sounds are generated by an aerial vehicle during operation. For example, the motors and propellers of an aerial vehicle generate sounds during operation. Disclosed are systems, methods, and apparatus for actively adjusting the position of one or more propeller blade treatments of a propeller blade of an aerial vehicle during operation of the aerial vehicle. For example, the propeller blade may have one or more propeller blade treatments that may be adjusted between two or more positions. Based on the position of the propeller blade treatments, the airflow over the propeller is altered, thereby altering the sound generated by the propeller when rotating. By altering the propeller blade treatments on multiple propeller blades of the aerial vehicle, the different sounds generated by the different propeller blades may effectively cancel, reduce, and/or otherwise alter the total sound generated by the aerial vehicle.
Propeller Blade Trailing Edge Fringes For Improved Sound Control
- Seattle WA, US Gur Kimchi - Bellevue WA, US Allan Ko - Seattle WA, US
International Classification:
B64C 11/18 B64C 27/06 B64C 11/20
Abstract:
Sounds are generated by an aerial vehicle during operation. For example, the motors and propellers of an aerial vehicle generate sounds during operation. Disclosed are systems, methods, and apparatus for actively adjusting the position of one or more propeller blade treatments of a propeller blade of an aerial vehicle during operation of the aerial vehicle. For example, the propeller blade may have one or more propeller blade treatments that may be adjusted between two or more positions. Based on the position of the propeller blade treatments, the airflow over the propeller is altered, thereby altering the sound generated by the propeller when rotating. By altering the propeller blade treatments on multiple propeller blades of the aerial vehicle, the different sounds generated by the different propeller blades may effectively cancel, reduce, and/or otherwise alter the total sound generated by the aerial vehicle.
Googleplus
Allan Ko
Allan Ko
About:
Love dogs, teaching, food, and tech. Hate long waits, bad grammar, and irrationality.