Bernth Johansson - Mala, SE Alan Witten - Norman OK, US Anthony Devaney - Boston MA, US
International Classification:
G01S013/88 G01V003/12
US Classification:
342/022000, 342/027000
Abstract:
Methods and systems consistent with this invention identify a buried object using array-based ground penetrating radar having a control device, a plurality of transmit antennas, and a plurality of receive antennas. Such methods and systems receive a transmit timing input signal and a receive timing input signal. Such methods and systems comprise a first delay circuit for receiving the transmit timing input signal and generating a number of intermediate transmit timing signals delayed with respect to each other by a delay time, and transmit output switch circuit to select either the transmit timing input signal or a corresponding one of the intermediate transmit timing signals as a corresponding output transmit timing signal. Such methods and systems also comprise a second delay circuit for receiving the receive timing input signal and generating a number of intermediate receive timing signals delayed with respect to each other by the delay time, a shift-delay circuit coupled to the second delay circuit and the receive timing input signal to add the delay time to the intermediate receive timing signals, and a receive output switch circuit to select either the receive timing input signal or a corresponding one of the intermediate receive timing signals as a corresponding output receive timing signal. Such methods and systems also comprise an antenna array comprising a plurality of transmit antennas, a plurality of receive antennas, and means for selectively enabling the transmit and receive antennas to allow each of the receive antennas to receive energy from any one of the transmit antennas.
Optical Quadrature Interferometry Utilizing Polarization To Obtain In-Phase And Quadrature Information
Charles A. DiMarzio - Cambridge MA Anthony J. Devaney - Boston MA Scott C. Lindberg - Brighton MA
Assignee:
Northeastern University - Boston MA
International Classification:
G01B 902
US Classification:
356351
Abstract:
An optical quadrature interferometer is presented. The optical quadrature interferometer uses a different state of polarization in each of two arms of the interferometer. A light beam is split into two beams by a beamsplitter, each beam directed to a respective arm of the interferometer. In one arm, the measurement arm, the light beam is directed through a linear polarizer and a quarter wave plate to produce circularly polarized light, and then to a target being measured. In the other arm, the to reference arm, the light beam is not subject to any change in polarization. After the light beams have traversed their respective arms, the light beams are combined by a recombining beamsplitter. As such, upon the beams of each arm being recombined, a polarizing element is used to separate the combined light beam into two separate fields which are in quadrature with each other. An image processing algorithm can then obtain the in-phase and quadrature components of the signal in order to construct an image of the target based on the magnitude and phase of the recombined light beam.
Robert A. Gonsalves - Woburn MA Anthony J. Devaney - Ridgefield CT
Assignee:
Eikonix Corportation - Bedford MA
International Classification:
G01J 120
US Classification:
250201
Abstract:
Adaptive optics with controllable delay in a matrix of regions focuses the image of an object upon a detector array in an image plane that provides a signal set representative of the radiant energy incident upon a matrix of locations in the image plane. An image signal processor processes this signal set to provide a wavefront error signal representative of the estimated wavefront phase distortion of the radiant energy incident upon the detector array. A control system responds to this wavefront error signal to effect alteration of the phase delay introduced by the adaptive optics to reduce the phase distortion of radiant energy incident upon the detector array.
Isbn (Books And Publications)
Inverse Optics: April 6-8, 1983, Arlington, Virginia