CARL PRATHER - Birmingham AL, US Denis Grob - Winterthur, CH Claes Lemcke - Dietlikon, CH
International Classification:
G21C 19/00
US Classification:
376309
Abstract:
In accordance with the present invention, there is provided a strainer system for use in a nuclear sump. The strainer system of the present invention includes at least one primary strainer module which defines a primary strainer/filter surface. In the strainer system, the primary strainer surface of the primary strainer module has a debris interceptor which is cooperatively engaged thereto, and may be outfitted with one or more pressure released or activated membranes. In a loss of coolant accident, the debris interceptor, alone or in combination with the pressure activated membrane(s), is adapted to reduce the differential pressure experienced across the strainer system in nuclear power plants with medium to high fiber loads.
STANISLAW KIELBOWICZ - Waedenswil, CH Carl W. Prather - Birmingham AL, US
International Classification:
B01D 29/50 B01D 29/52 B01D 29/60
US Classification:
210137, 210315
Abstract:
In accordance with the present invention, there is provided an increased efficiency strainer system which is particularly suited for use in the emergency core cooling system of a nuclear power plant. In certain embodiments of the present invention, the strainer system includes one or more strainer cassettes or cartridges, with each such cassette or cartridge including a plurality of strainer pockets disposed in side-by-side relation to each other. In these embodiments, multiple cassettes or cartridges may be assembled together to form a strainer module of the strainer system. The strainer pockets of the cartridge each define an inflow end. Within the cartridge, or the module including multiple cartridges, the inflow ends of one or more of the strainer pockets may be enclosed by an elastic metal membrane. When in a closed position, the membrane prevents liquid flow into the corresponding strainer pocket via the inflow end thereof. The membrane remains closed when only a low pressure load is exerted thereon, but is deflected or deformed into an open position when a high pressure load is exerted thereon. The movement of the membrane to its open position effectively opens the corresponding strainer pocket, thus allowing for the flow of liquid into the interior of the strainer pocket via the inflow end thereof.
Stanislaw Kielbowicz - Waedenswil, CH Carl W. Prather - Birmingham AL, US
International Classification:
B01D 29/60 B01D 29/56
US Classification:
210137, 210335
Abstract:
In accordance with the present invention, there is provided a strainer system comprising a plurality of strainer modules, each of which comprises multiple cassettes or cartridges assembled together in a prescribed arrangement. In the strainer system constructed in accordance with the present invention, the “clean” sides of the strainer modules are fluidly connected to each other by a plenum duct which also has a suction pump fluidly coupled thereto. Integrated into the plenum duct is a pressure released membrane (PRM) which is positioned so as to effectively isolate one of the strainer modules from the remaining active strainer modules included in the strainer system. The pressure released membrane is uniquely configured so as to facilitate the activation of the isolated strainer module when pressure across the plenum duct increases beyond a prescribed threshold.