Nature Coast Medical Group 130 SW 7 St, Williston, FL 32696 3525285801 (phone), 3525286019 (fax)
Education:
Medical School Nova Southeastern University College of Osteopathic Medicine Graduated: 1986
Languages:
English
Description:
Dr. McCoy graduated from the Nova Southeastern University College of Osteopathic Medicine in 1986. He works in Williston, FL and specializes in Internal Medicine.
A cable rack suitable for underground service is made from at least one plastic molded stanchion and a cross-arm. A height of the rack may be adjusted by stacking the stanchions lengthwise, in tandem, and by trimming the stanchions as desired. The best places in the stanchion for trimming are indicated with molded-in visual indicators. The cross-arms, which may be used to span two stanchions, are designed so that a user receives a visual indication from the stanchion when the cross-arm is fully seated and ready to receive a load of communications cables, power cables, or both. In a preferred embodiment, each stanchion has an aperture for attaching to a wall near a top of the stanchion. Plastic cable ties may be used to secure small cables to the stanchions without a cross arm, and may also be used to lock cross arms into the stanchions.
Apparatuses and methods are disclosed for mounting conduits within spacers for underground installation. Spacers for side loading of conduit, as opposed to older methods of end loading, allow construction workers to easily assemble conduits to a plurality of spacers above-ground. The side loading technique uses spacers having bores that communicate with each other, preferably in a radial manner. Thus, a first plurality of conduits may be assembled or mounted to an inner portion of the spacers and then at least a second plurality of conduits may be assembled and mounted to an outer portion of the spacers. Cables later pulled through the conduits are typically those used for the transmission of electricity or communication signals. Other embodiments use bores that do not communicate with each other but are secured to the spacers with an outer banding saddle.
Conduit spacers useful in preparing duct banks are disclosed. The conduit spacers are designed for attachment to each other in vertical and horizontal combinations, that is, they may be arranged in side-by-side arrays, up-and-down arrays, or arrays that are both side-to-side and up-and-down. Thus, the conduit spacers include both vertical and horizontal restraints or interlocks. The vertical interlocks are achieved by the use of tapered tabs and tapered slots, both the tabs and the slots having tapers in the same horizontal direction. Horizontal interlocks are made by the use of rails and matching grooves in the sides of the spacers. Thus, both vertical and horizontal interlocks are achieved by assembling the ducts in a horizontal direction, side-by-side as desired for width, and up-and-down as desired for height. The number and length of conduits and the length of the duct banks needed dictate how many spacers are needed.
A cable rack arm and support system suitable for underground power and communication service is made from reinforced non-metallic polymers that will not rust or corrode. A cable rack arm up to thirty inches long may be compression molded with long glass fibers in a polyester or vinylester matrix. Each cable rack arm is securely mounted to a non-metallic stanchion that may be made from a reinforced, pultruded composite material. Nonmetallic pins may be used to secure the cable rack arms to the stanchions. Each cable rack arm then supports one or more cables in cable saddles that are snap-fit atop the arm, thus keeping the cables accessibly organized in a manhole, tunnel or vault. Each saddle may include elastomeric dampening material to reduce shock and vibration in the mechanical and electrical environment in underground tunnels, vaults and manholes.
A cable rack arm and support system suitable for underground power and communication service is made from reinforced non-metallic polymers that will not rust or corrode. A cable rack arm up to thirty inches long may be compression molded with long glass fibers in a polyester or vinylester matrix. Each cable rack arm is securely mounted to a non-metallic stanchion that may be made from a reinforced, pultruded composite material. Nonmetallic pins may be used to secure the cable rack arms to the stanchions. Each cable rack arm then supports one or more cables in cable saddles that are snap-fit atop the arm, thus keeping the cables accessibly organized in a manhole, tunnel or vault. Each saddle may include elastomeric dampening material to reduce shock and vibration in the mechanical and electrical environment in underground tunnels, vaults and manholes.
A cable rack arm and support system suitable for underground power and communication service is made from a non-metallic polymer that will not rust or corrode. The cable rack arm is adapted for mounting to existing underground stanchions or for stanchions of a more modern design. Each cable rack arm is securely mounted to the stanchion. Each cable rack arm then supports one or more cables in cable rests or saddles molded atop the arm, thus keeping the cables accessibly organized in a manhole, tunnel or vault. Plastic cable ties may be used to secure the cables to the cable rack arms. Nonmetallic pins may also be used to secure the cable rack arms to the stanchions. The stanchions may be made of nonmetallic composite material that includes a fiberglass cross-layered knitted apertured mat for increased strength.
A cable rack arm and support system suitable for underground power and communication service is made from a non-metallic polymer that will not rust or corrode. The cable rack arm is adapted for mounting to existing underground stanchions or for stanchions of a more modern design. Each cable rack arm is securely mounted to the stanchion. Each cable rack arm then supports one or more cables in cable rests or saddles molded atop the arm, thus keeping the cables accessibly organized in a manhole, tunnel or vault. Plastic cable ties may be used to secure the cables to the cable rack arms. Nonmetallic pins may also be used to secure the cable rack arms to the stanchions. The stanchions may be made of nonmetallic composite material that includes a fiberglass cross-layered knitted apertured mat for increased strength.
A cable rack arm and support system suitable for underground power and communication service is made from a non-metallic polymer that will not rust or corrode. The cable rack arm is adapted for mounting to existing underground stanchions or for stanchions of a more modern design. Each cable rack arm is securely mounted to the stanchion. Each cable rack arm then supports one or more cables in cable rests or saddles molded atop the arm, thus keeping the cables accessibly organized in a manhole, tunnel or vault. Plastic cable ties may be used to secure the cables to the cable rack arms. Nonmetallic pins may also be used to secure the cable rack arms to the stanchions. The stanchions may be made of nonmetallic composite material that includes a fiberglass cross-layered knitted apertured mat for increased strength.