A molded plastic package for semiconductor devices incorporating a heat sink, controlled impedance leads and separate power and ground rings is described. The lead frame of the package, separated by a dielectric layer, is attached to a metal heat sink. It has more than one ring for power and ground connections. The die itself is attached directly onto the heat sink through a window on the dielectric and provides high power dissipation. The package is molded using conventional materials and equipment.
Molded Plastic Package With Heat Sink And Enhanced Electrical Performance
A molded plastic package for semiconductor devices incorporating a heat sink, controlled impedance leads and separate power and ground rings is described. The lead frame of the package, separated by a dielectric layer, is attached to a metal heat sink. It has more than one ring for power and ground connections. The die itself is attached directly onto the heat sink through a window on the dielectric and provides high power dissipation. The package is molded using conventional materials and equipment.
Method Of Manufacturing A Flexible Integrated Circuit Package Utilizing An Integrated Carrier Ring/Stiffener
Robert P. Sheppard - Redbluff CA Edward G. Combs - Foster City CA
Assignee:
ASAT, Limited - Tsuen Wan
International Classification:
H01L 2148
US Classification:
438110
Abstract:
A carrier ring provides a stiffening function for assembling flexible circuits or semi-rigid circuits. The carrier ring is attached to a substrate adapted for attachment of a matrix of semiconductor dies. The carrier ring is provided with mold gates and mold vents for use with a transfer molding step to provide encapsulation for the semiconductor dies. Alignment and indexing marks on the carrier ring allows use of conventional assembly process flows in conventional assembly equipment. The height of the carrier ring also provides a means of providing integrated circuits with a predetermined thickness.
Integrated Carrier Ring/Stiffener And Method For Manufacturing A Flexible Integrated Circuit Package
Robert P. Sheppard - Redbluff CA Edward G. Combs - Foster City CA
Assignee:
ASAT, Limited - Hong Kong
International Classification:
H01L 2328
US Classification:
257787
Abstract:
A carrier ring provides a stiffening function for assembling flexible circuits or semi-rigid circuits. The carrier ring is attached to a substrate adapted for attachment of a matrix of semiconductor dies. The carrier ring is provided with mold gates and mold vents for use with a transfer molding step to provide encapsulation for the semiconductor dies. Alignment and indexing marks on the carrier ring allows use of conventional assembly process flows in conventional assembly equipment. The height of the carrier ring also provides a means of providing integrated circuits with a predetermined thickness.
Integrated Circuit Package With Bonding Planes On A Ceramic Ring Using An Adhesive Assembly
Edward G. Combs - Foster City CA Robert Sheppard - Redbluff CA
Assignee:
ASAT, Limited - Tsuen Wan NT
International Classification:
H01L 2348
US Classification:
257675
Abstract:
An integrated circuit package includes a ceramic ring having an inside cavity for accommodating a semiconductor die. Conductive traces are provided on the ceramic ring so as to serve as power and ground signal busses. Power and ground connection pads on the semiconductor die can be commonly bonded to these conductive traces, which are in turn commonly bonded to selected pins of the lead frame. In addition, an acrylic adhesive is used as a moisture-resistant adhesive.
High Power Dissipation Plastic Encapsulated Package For Integrated Circuit Die
A structure and a method provide an assembly for receiving an integrated circuit die. The assembly comprises a heat sink selectively coated with electrically insulative material. The heat sink is attached by one of various methods directly on to the integrated circuit die and a lead frame for external electrical connections. The heat sink is formed as a stepped structure to increase the path of moisture penetration so as to improve moisture resistance and reliability. In one embodiment of the present invention, the electrically insulative material comprises anodized aluminum, which is formed on the heat sink by a vapor deposition step, followed by a hard anodization step. Other electrical insulative material which can be thinly applied on the surface of the heat sink are non-conductive resins and polymers. The heat sink is formed out of copper or a copper alloy, selected for strength and electrical and thermal conductivities. The heat sink can be connected to a power or a ground terminal of the integrated circuit, which is bonded on the heat sink on an exposed (i. e.