Tony P. Leong - San Jose CA Edward S. North - Los Altos CA Richard Linsley Herbst - Palo Alto CA
Assignee:
New Wave Research - Sunnyvale CA
International Classification:
G02B 530
US Classification:
359352
Abstract:
A probe station which comprises a base machine, a chuck mounted on the base machine to hold a device under test (DUT), a probe platen mounted on the base machine on which to mount probes for the device, a microscope mounted on the base machine having a field of view on the DUT on the chuck, and a single laser, mounted with the microscope. The single laser supplies an output beam in a plurality of wavelengths through the microscope optics on a beam line to the field of view of the microscope. The laser system includes a solid state laser, a harmonic generator coupled with the solid state laser, and switchable optics for selecting the wavelength of the output beam from among two or more selectable wavelengths. In addition, the laser system includes a variable attenuator, based on a unique half-wave plate, which operates for the plurality of wavelengths which are selectable as outputs in the infrared (1064 nanometers), in the green (532 nanometers), and in the ultraviolet (355 nanometers, or 266 nanometers). These wavelengths correspond to the fundamental output wavelength of the Nd:YAG laser, the second harmonic, and either the third or fourth harmonic of the laser.
Multi-Wavelength Variable Attenuator And Half Wave Plate
Tony P. Leong - San Jose CA Edward S. North - Los Altos CA Richard Linsley Herbst - Palo Alto CA
Assignee:
New Wave Research - Sunnyvale CA
International Classification:
G02B 530 G02B 2728
US Classification:
359352
Abstract:
A probe station which comprises a base machine, a chuck mounted on the base machine to hold a device under test (DUT), a probe platen mounted on the base machine on which to mount probes for the device, a microscope mounted on the base machine having a field of view on the DUT on the chuck, and a single laser, mounted with the microscope. The single laser supplies an output beam in a plurality of wavelengths through the microscope optics on a beam line to the field of view of the microscope. The laser system includes a solid state laser, a harmonic generator coupled with the solid state laser, and switchable optics for selecting the wavelength of the output beam from among two or more selectable wavelengths. In addition, the laser system includes a variable attenuator, based on a unique half-wave plate, which operates for the plurality of wavelengths which are selectable as outputs in the infrared (1064 nanometers), in the green (532 nanometers), and in the ultraviolet (355 nanometers, or 266 nanometers). These wavelengths correspond to the fundamental output wavelength of the Nd:YAG laser, the second harmonic, and either the third or fourth harmonic of the laser.
Multi-Wavelength Laser System, Probe Station And Laser Cutter System Using The Same
Tony P. Leong - San Jose CA Edward S. North - Los Altos CA Richard Linsley Herbst - Palo Alto CA
Assignee:
New Wave Research - Sunnyvale CA
International Classification:
B23K 2600
US Classification:
2191216
Abstract:
A probe station which comprises a base machine, a chuck mounted on the base machine to hold a device under test (DUT), a probe platen mounted on the base machine on which to mount probes for the device, a microscope mounted on the base machine having a field of view on the DUT on the chuck, and a single laser, mounted with the microscope. The single laser supplies an output beam in a plurality of wavelengths through the microscope optics on a beam line to the field of view of the microscope. The laser system includes a solid state laser, a harmonic generator coupled with the solid state laser, and switchable optics for selecting the wavelength of the output beam from among two or more selectable wavelengths. In addition, the laser system includes a variable attenuator, based on a unique half-wave plate, which operates for the plurality of wavelengths which are selectable as outputs in the infrared (1064 nanometers), in the green (532 nanometers), and in the ultraviolet (355 nanometers, or 266 nanometers). These wavelengths correspond to the fundamental output wavelength of the Nd:YAG laser, the second harmonic, and either the third or fourth harmonic of the laser.
Multi-Wavelength Laser System, Probe Station And Laser Cutter System Using The Same
Tony P. Leong - San Jose CA Edward S. North - Los Altos CA Richard L. Herbst - Palo Alto CA
Assignee:
New Wave Research - Sunnyvale CA
International Classification:
B23K 2600
US Classification:
2191216
Abstract:
A probe station which comprises a base machine, a chuck mounted on the base machine to hold a device under test (DUT), a probe platen mounted on the base machine on which to mount probes for the device, a microscope mounted on the base machine having a field of view on the DUT on the chuck, and a single laser, mounted with the microscope. The single laser supplies an output beam in a plurality of wavelengths through the microscope optics on a beam line to the field of view of the microscope. The laser system includes a solid state laser, a harmonic generator coupled with the solid state laser, and switchable optics for selecting the wavelength of the output beam from among two or more selectable wavelengths. In addition, the laser system includes a variable attenuator, based on a unique half-wave plate, which operates for the plurality of wavelengths which are selectable as outputs in the infrared (1064 nanometers), in the green (532 nanometers), and in the ultraviolet (355 nanometers, or 266 nanometers). These wavelengths correspond to the fundamental output wavelength of the Nd:YAG laser, the second harmonic, and either the third or fourth harmonic of the laser.
Edward North, 1st Baron North (c. 14961564) was an English peer and politician. He was the Lord Lieutenant of Cambridgeshire 15591564 and Clerk of the ...