A semiconductor wafer transfer machine for transferring first wafers having a first diameter from a first transferor carrier to a first receiver carrier and second wafers having a second diameter different from the first diameter from a second transferor carrier to a second receiver carrier. The wafer transfer machine includes a base plate with a longitudinal axis for placement on the base plate of the transferor carriers and the receiver carriers and a mechanism for transferring wafers contained in the first and second transferor carriers to the first and second receiver carriers, respectively. The wafer transfer machine also includes an adjustable positioner that comprises (1) a transferor positioning mechanism for aligning the first and second transferor carriers on the top surface of the base plate, (2) a first receiver positioning mechanism for aligning the first receiver carrier in a first position with respect to the first transferor carrier on the top surface of the base plate, and (3) a second receiver positioning mechanism for aligning the second receiver carrier in a second position with respect to the second transferor carrier on the top surface of the base plate.
A wafer lift for lifting a series of vertically oriented wafers arranged parallel to one another in a cassette. The wafer lift includes a vertically movable ramp and a cassette guide positioned over the ramp. The ramp is raised to engage wafers in a cassette supported on the guide so that each wafer is lifted incrementally higher than the preceding wafer.
An adjustable wafer transfer machine that includes an adjusting mechanism for changing the spacing between adjacent wafers to accommodate placement of the wafers in either a smaller wafer carrier or a larger wafer carrier and a transfer mechanism for transferring the wafers between the smaller wafer carrier and the adjusting mechanism and for transferring the wafers between the larger wafer carrier and the adjusting mechanism. The adjusting mechanism comprises a pair of flat plates disposed parallel to and opposite one another and a plurality of elongated opposing dividers slidably mounted on the plates. The dividers are disposed vertically adjacent to one another at spaced apart intervals and they extend horizontally to support the wafers along a portion of their perimeter. A positioning mechanism is operatively coupled to the dividers for changing the spacing between the dividers and, correspondingly, between the wafers supported on the dividers.
A wafer lift for lifting a series of vertically oriented wafers arranged parallel to one another in a cassette. The wafer lift comprises a lift plate and an actuator mechanism for raising the lift plate. The lift plate has a contact surface for engaging the edge of each of the wafers. The contact surface extends upward at a predetermined angle so that, when the lift plate is raised and the contact surface engages the edges of the wafers, each wafer is lifted incrementally higher than the preceding wafer. The actuator mechanism includes a bell crank rotatable about a pivotal axis for transforming rotational motion into translational motion. The bell crank has first and second crank arms that extend radially from the pivotal axis and an arcuate member that extends circumferentially between and joining the crank arms. Thus, the arcuate member forms the circumferential perimeter of the bell crank. The actuator mechanism also includes a transmission mechanism for transmitting the translational motion of the perimeter of the bell crank to the lift plate to raise the lift plate so that the contact surface engages the edges of the wafers.
Notch Finder And Combination Wafer Transfer Machine
Ernest C. Nichols - Boise ID Brian D. Brown - Nampa ID Timothy A. Strodtbeck - Boise ID Kevin A. Larsen - Boise ID Shelby K. Moore - Meridian ID John S. Molebash - Meridian ID
Assignee:
Micron Technology, Inc. - Boise ID
International Classification:
B65G 4724
US Classification:
414417
Abstract:
The invention provides a manually operated machine for radially aligning one or more semiconductor wafers. The machine includes an elongated first "notch" roller for rotatably engaging the edge of the wafers, a gear train, and a hand crank for manually rotating the first roller in cooperation with the gear train. The wafers are aligned according to the notches as the wafers are engaged and rotated by the notch roller until the notch in each wafer falls over and is disengaged by that roller. The manual notch finder may also include an elongated second "position" roller for rotatably engaging the edge of the wafers. The position roller is disposed laterally near the notch roller and sized and shaped to engage the edge of the wafers fully along the periphery of each wafer so that the aligned wafers can be positioned to any degree of radial orientation. The invention also provides a combination notch or flat finder machine integrated with a wafer transfer machine. The combination machine includes a base plate, a translatable transfer arm, and a notch finder machine such as that described above, or a flat finder machine.
A water lift for lifting a series of vertically oriented wafers arranged parallel to one another in a cassette. The wafer lift comprises a lift plate and an actuator mechanism for raising the lift plate. The lift plate has a contact surface for engaging the edge of each of the wafers. The a contact surface extends upward at a predetermined angle so that, when the lift plate is raised and contact surface engages the edges of the wafers, each wafer is lifted incrementally higher than the preceding wafer. The actuator mechanism includes a bell crank rotatable about a pivotal axis for transforming rotational motion into translational motion. The bell crank has first and second crank arms that extend radially from the pivotal axis and an arcuate member that extends circumferentially between and joining the crank arms. Thus, the arcuate member forms the circumferential perimeter of the bell crank. The actuator mechanism also includes a transmission mechanism for transmitting the translational motion of the perimeter of the bell crank to the lift plate to raise the lift plate so that the contact surface engages the edges of the wafers.
Ernest C. Nichols - Boise ID Leo L. Malmin - Nampa ID
Assignee:
Micron Technology, Inc. - Boise ID
International Classification:
B65G 110
US Classification:
414331
Abstract:
A adjustable wafer transfer machine that includes an adjusting mechanism for changing the spacing between adjacent wafers to accommodate placement of the wafers in either a smaller wafer carrier or a larger wafer carrier and a transfer mechanism for transferring the wafers between the smaller wafer carrier and the adjusting mechanism and for transferring the wafers between the larger wafer carrier and the adjusting mechanism. The adjusting mechanism comprises a pair of flat plates disposed parallel to and opposite one another and a plurality of elongated opposing dividers slidably mounted on the plates. The dividers are disposed vertically adjacent to one another at spaced apart intervals and they extend horizontally to support the wafers along a portion of their perimeter. A positioning mechanism is operatively coupled to the dividers for changing the spacing between the dividers and, correspondingly, between the wafers supported on the dividers.
Ernest C. Nichols - Boise ID Leo L. Malmin - Nampa ID
Assignee:
Micron Technology, Inc. - Boise ID
International Classification:
B65G 6534
US Classification:
414404
Abstract:
A semiconductor wafer transfer machine for transferring first wafers having a first diameter from a first transferor carrier to a first receiver carrier and second wafers having a second diameter different from the first diameter from a second transferor carrier to a second receiver carrier. The wafer transfer machine includes a base plate with a longitudinal axis for placement on the base plate of the transferor carriers and the receiver carriers and a mechanism for transferring wafers contained in the first and second transferor carriers to the first and second receiver carriers, respectively. The wafer transfer machine also includes an adjustable positioner that comprises (1) a transferor positioning mechanism for aligning the first and second transferor carriers on the top surface of the base plate, (2) a first receiver positioning mechanism for aligning the first receiver carrier in a first position with respect to the first transferor carrier on the top surface of the base plate, and (3) a second receiver positioning mechanism for aligning the second receiver carrier in a second position with respect to the second transferor carrier on the top surface of the base plate.
Name / Title
Company / Classification
Phones & Addresses
Ernest D. Nichols Incorporator
CAST, INCORPORATED
Isbn (Books And Publications)
Supply Chain Redesign : Transforming Supply Chains into Integrated Value Systems