A method and system for evacuating vapors from a vessel comprising at least one fluid line which can have a pump configured to draw a water and/or air mixture which is combined with vapors vacuumed from a tank via another inlet, yielding a solution that can then be disposed as a liquid. Vacuum at the inlet is created by the flowing of the water or air/water mixture past the inlet. The reduced pressure of the moving liquid causes a pressure differential with the higher pressure within the tank, and thus the vapors migrate into the vapor evacuation assembly, are mixed with the fluid, and can then be disposed, or continually recycled, with the fumes stored for later disposal.
A vapor evacuating device that enables product offloaders to quickly, easily, and safely offload chemicals and the associated vapors from vessels with minimal environmental impact and inconvenience by combining vapors from a tanker vehicle with an evacuation fluid, such as water, in order to yield a solution that is easily and safely disposed.
According to the present invention, the vapor evacuation device comprises a mobile housing encasing at least one fluid line configured to draw vapors from a tank via an inlet, and to feed these vapors through solution. This process yields a relatively benign liquid solution together with vapors which can be drained and vented, respectively, when convenient to the operator.