A method for modifying the electrostatic discharge (ESD) characteristics of a polymeric material by integrating metallocene moieties as constituents of the polymer structure. In a preferred embodiment, the metallocene is part of the polymer backbone structure. In another preferred embodiment, the metallocene moieties are in sufficiently close proximity to one another such that electrostatic charge propagation is promoted. In another preferred embodiment, the metallocene is ferrocene. In another embodiment, an article is formulated from, or coated with, a polymeric composition containing metallocene as a polymer constituent. The subject invention includes novel polymeric compositions. Polymeric compositions of the subject invention, and articles made therefrom, exhibit electrostatic dissipative properties which are useful in preventing destructive electrostatic discharge.
Organic/Inorganic Nanocomposites Obtained By Extrusion
Gordon Nelson - Melbourne FL, US Feng Yang - Palm Bay FL, US
International Classification:
C08K009/00 C08K003/18 C08K003/34
US Classification:
523216000, 524445000, 524430000, 524492000
Abstract:
Organic/inorganic nanocomposites and methods for their preparation are disclosed. In one embodiment, the method comprises the steps of providing an organic/inorganic concentrate and processing the concentrate with a polymer resin. In a preferred embodiment the organic/inorganic concentrate and polymer resin are processed by extrusion using a single-screw extruder. In another embodiment, the method further comprises surface modifying an inorganic additive, mixing the modified additive with a polymer solution to produce an organic/inorganic solution, and removing solvent from the organic/inorganic solution to produce the organic/inorganic concentrate. Processing of the organic/inorganic concentrate with a polymer resin produces a homogeneous nanocomposite with superior mechanical and thermal properties.
Polymer Materials With Electrostatic Dissipative Properties
A method for modifying the electrostatic discharge (ESD) characteristics of a polymeric material by integrating metallocene moieties as constituents of the polymer structure. In a preferred embodiment, the metallocene is part of the polymer backbone structure. In another preferred embodiment, the metallocene moieties are in sufficiently close proximity to one another such that electrostatic charge propagation is promoted. In another preferred embodiment, the metallocene is ferrocene. In another embodiment, an article is formulated from, or coated with, a polymeric composition containing metallocene as a polymer constituent. The subject invention includes novel polymeric compositions. Polymeric compositions of the subject invention, and articles made therefrom, exhibit electrostatic dissipative properties which are useful in preventing destructive electrostatic discharge.