Donald B. MacKay - Spanish Fork UT Brian C. Nielson - Orem UT Dale L. Henriksen - Orem UT Roger Evan Billings - Provo UT Harold M. Simons - Orem UT Paul P. Hindmarsh - Provo UT
Assignee:
Billings Energy Research Corporation - Provo UT
International Classification:
F02B 4300
US Classification:
123 3
Abstract:
A hydride fuel system is disclosed for use with a motor vehicle or other apparatus having a combustion unit and a mixing device for mixing hydrogen gas with air for introduction into the combustion unit. The system includes a hydride storage tank having a housing and a plurality of containers disposed in the housing for holding hydride material. The containers are spaced apart to enable the flow thereabout of fluid introduced into the housing of the hydride storage tank. Either exhaust gases or combustion unit cooling fluid is delivered into the hydride storage tank housing to heat the hydride material in the containers and cause the material to release hydrogen gas which is then conveyed to the mixing device. The pressure of the hydrogen gas in the containers is monitored and the amount of exhaust gases or cooling fluid delivered to the hydride storage tank is controlled accordingly. Thus, if the pressure exceeds some predetermined level, then the delivery of exhaust gases or cooling fluid to the hydride tank is inhibited.
A method of producing ferrotitanium alloy from sponge titanium includes placing sponge titanium in a receptacle and pouring molten iron or steel onto the titanium so that the molten metal flows downwardly and outwardly through the titanium to melt the titanium and mix therewith. While the molten iron or steel is being poured onto the titanium, an inert gas in introduced into the receptacle to prevent oxidation of the titanium. After the molten iron or steel has melted the titanium, the mixture is stirred to eliminate porosity in the resulting alloy.
Self-Regenerating System Of Removing Oxygen And Water Impurities From Hydrogen Gas
Oxygen and water impurities are cleaned from hydrogen, which is to be stored in tanks containing a hydride-forming metallic alloy, using a novel, self-cleaning filter system. The impurity-containing hydrogen gas is first passed through a catalyst bed comprising a catalyst which is adapted to convert oxygen in the presence of hydrogen to water. The gas then passes through an adsorbent capable of adsorbing water from the gas stream, thereby substantially removing water impurities from the hydrogen gas. The purified hydrogen gas is charged into a storage tank containing a hydride-forming metallic alloy which absorbs the hydrogen by reacting therewith to form hydrogen-loaded metallic hydride. When the storage tank is to be discharged, the hydrogen-loaded metallic hydride in the tank is treated to release hydrogen gas therefrom. The released gas is passed back through the adsorbent, thereby cleaning the adsorbent of water impurities deposited therein when the tank was being charged with hydrogen.
Granulating And Activating Metal To Form Metal Hydride
A metal material, which is capable of reacting with hydrogen to form a metal hydride, is simultaneously granulated and conditioned with hydrogen to activate the metal material to a state in which it is capable of readily reacting with and absorbing hydrogen. The granulation and activation are achieved by heating the metal material to a temperature of at least about 200. degree. F. and treating the heated metal material with hydrogen, while concurrently subjecting the metal material to mechanical impact to reduce the average particle size thereof to less than about 1 centimeter.
Self-Regenerating Method And System Of Removing Oxygen And Water Impurities From Hydrogen Gas
Oxygen and water impurities are cleaned from hydrogen, which is to be stored in tanks containing a hydride-forming metallic alloy, using a novel, self-cleaning filter system. The impurity-containing hydrogen gas is first passed through a catalyst bed comprising a catalyst which is adapted to convert oxygen in the presence of hydrogen to water. The gas then passes through an adsorbent capable of adsorbing water from the gas stream, thereby substantially removing water impurities from the hydrogen gas. The purified hydrogen gas is charged into a storage tank containing a hydride-forming metallic alloy which absorbs the hydrogen by reacting therewith to form hydrogen-loaded metallic hydride. When the storage tank is to be discharged, the hydrogen-loaded metallic hydride in the tank is treated to release hydrogen gas therefrom. The released gas is passed back through the adsorbent, thereby cleaning the adsorbent of water impurities deposited therein when the tank was being charged with hydrogen.
Electrolyzer Apparatus And Electrode Structure Therefor
Barrie C. Campbell - Payson UT Harold M. Simons - Orem UT
Assignee:
Billings Energy Corporation - Provo UT
International Classification:
C25B 900 C25B 1103 C25B 1104
US Classification:
204256
Abstract:
Electrolysis apparatus and electrode structure comprising a solid polymer electrolyte membrane, a porous cathode plate, and a porous anode plate which is electrochemically compatible with the cathode, so that the anode plate and cathode plate are substantially immune from galvanic corrosion. The solid polymer electrolyte membrane is disposed between the anode plate and cathode plate, and means are provided for holding the anode and cathode plates in firm contact with the opposite sides, respectively, of the membrane. In an embodiment employing a plurality of sets of electrode structures means are provided for securing the anode plate, solid polymer electrolyte membranes, and cathode plate of each electrode structure in side-by-side relationship and to secure the respective electrode structures in spaced series arrangement, with a spacer plate positioned between the individual sets of spaced electrode structures. A series of grooves is provided between the anode plate and the plate in contact therewith. The grooves extend in generally parallel relationship across the interface of the anode plate and the other plate.