Commercial Litigation Collections Construction Law Energy Insurance Defense Litigation Civil Litigation Complex Litigation Medical Malpractice Products Liability Professional Liability Trade Secrets Business & Corporate Employment Trial Practice Business & Corporate Law
Roberto A. Collins - San Jose CA 95123 James B. Colvin - Newark CA 94560
International Classification:
H05B 608
US Classification:
219662, 219663
Abstract:
A portable induction heating system which utilizes a broadband high frequency high-power, low output impedance power generator formed from switching MOSFET devices. A voltage-controlled oscillator (VCO) or microprocessor-controlled signal generator drives a power output stage under feedback control so as to effectuate resonance at a high frequency in an induction coil assembly connected to the power generator. The power generator is operable with a switching regulator that can supply a fixed DC voltage, e. g. , 12 to 48 V or a variable setpoint. The induction coil assembly includes a capacitive circuit portion connected to a conductive coil that can couple magnetic field to a susceptor. A microcontroller is provided for inputting operating parameters such as power, frequency, duty cycle and duration, and is operable to auto-tune the VCO output under feedback control by sweeping frequency at startup as well as by controlling drift during operation under a changing load.
System And Method For Use In Functional Failure Analysis By Induced Stimulus
A scanning/imaging system wherein an external stimulus is used for exciting a device under test (DUT). A stimulus source is included for providing a stationary stimulus with a controllable spot size to a device under test (DUT), the controllable spot size covering a portion of the DUT for excitation by the stationary stimulus. A sensor is operable for capturing at least one of a functional response signal and an optical image signal emanating from the DUT portion. A linear positioning device is operable to facilitate scanning of remaining portions of the DUT until a predetermined area thereof has been traversed. A controller is operably coupled to the linear positioning device, stimulus source and the sensor for providing the overall control thereof.
System And Method For Use In Functional Failure Analysis By Induced Stimulus
A scanning/imaging system wherein an external stimulus is used for exciting a device under test (DUT). A stimulus source is included for providing a stationary stimulus with a controllable spot size to a device under test (DUT), the controllable spot size covering a portion of the DUT for excitation by the stationary stimulus. A sensor is operable for capturing at least one of a functional response signal and an optical image signal emanating from the DUT portion. A linear positioning device is operable to facilitate scanning of remaining portions of the DUT until a predetermined area thereof has been traversed. A controller is operably coupled to the linear positioning device, stimulus source and the sensor for providing the overall control thereof.
System And Method For Use In Functional Failure Analysis By Induced Stimulus
A scanning/imaging system wherein an external stimulus is used for exciting a device under test (DUT). A stimulus source is included for providing a stationary stimulus with a controllable spot size to a device under test (DUT), the controllable spot size covering a portion of the DUT for excitation by the stationary stimulus. A sensor is operable for capturing at least one of a functional response signal and an optical image signal emanating from the DUT portion. A linear positioning device is operable to facilitate scanning of remaining portions of the DUT until a predetermined area thereof has been traversed. A controller is operably coupled to the linear positioning device, stimulus source and the sensor for providing the overall control thereof.
System And Method For Gradient Thermal Analysis By Induced Stimulus
A thermal gradient is induced in a device-under-test (DUT) and used to determine the location of a defect. In one embodiment, a laser creates a moving thermal gradient from a test site on the DUT and a respective time of flight for the thermal gradient to trigger a condition associated with the defect is determined. Repeating the time of flight testing at additional test site provides information used to trilaterate the defect in three dimensions. Alternately, a static thermal gradient is induced across at least a portion of the DUT along a first axis. The thermal gradient is incrementally walked along the first axis until the condition associated with the defect is triggered, thereby defining a first region. The thermal gradient is then induced along a second axis of the DUT and the process is repeated to define a second region. The location of the defect is determined to be the intersection of the first region with the second region.
Apparatus And Method For Electronic Sample Preparation
A method and apparatus for preparing electronic samples for a subsequent treatment, e.g., application of a failure analysis treatment. In one embodiment, an electronic device is mounted on a thermally controlled plate and a select temperature is applied thereto. While maintaining the select temperature applied to the thermally controlled plate, a sample preparation process is performed on the electronic device, such as, e.g., performing polishing, thinning, milling, lapping or extracting one or more semiconductor dies that form the electronic device.
Apparatus And Method For Endpoint Detection During Electronic Sample Preparation
A method for detecting an endpoint during removal of material from an electronic device includes while removing material from an electronic device-under-test (DUT) using a tip driven by a spindle, applying an input signal to the DUT via the tip and using an output signal received from one of the DUT and a mounting plate to which the DUT is attached to determine an endpoint for removal of material.
Apparatus And Method For Endpoint Detection During Electronic Sample Preparation
An apparatus for endpoint detection during removal of material from an electronic component includes a mounting plate operable to provide physical and electrical attachment for a device-under-test (DUT), a spindle operable to hold a tip for removing material from the DUT, a signal generator operable to provide an input signal to a first electrode, and a microprocessor connected to use an output signal from a second electrode to terminate the removal of material when an endpoint is reached, the first electrode being one of the tip and the DUT and the second electrode being the opposite one of the tip and the DUT.