James Englar - New Milford CT Juan Gonzalez - New Milford CT Scott Howell - New Milford CT David Gottberg - Moses Lake WA
Assignee:
J.R. Simplot Company - Boise ID
International Classification:
A23L 100
US Classification:
83402, 83 98, 83858, 83932, 99537, 99538
Abstract:
The invention relates to a food processing system. A fluid conduit of the system is configured for directing the food carried in a fluid medium along a food path. The system has a food inlet operatively associated with the fluid conduit for feeding the food into the conduit, and a pump operatively associated with the conduit for pumping the fluid through the conduit in a fluid stream direction. A processor unit is associated with the conduit, disposed along the food path, and includes a tool configured and associated with the conduit for performing a processing operation on the food, such as cutting potatoes into french fry strips. The system also has a deceleration element operatively associated with the conduit and configured for decelerating the fluid and carried food along the food path while maintaining the fluid flow substantially free of recirculation vortices.
Hydraulic Cutting System With Controlled Deceleration Conduit
An improved hydraulic cutting system is provided for cutting a succession of vegetable products or the like particularly such as potatoes into elongated strips, wherein the cutting system includes a deceleration conduit designed for decelerating cut product strips substantially without flow stream turbulence to reduce or eliminate strip breakage. The cutting system utilizes a propelling fluid flow stream to propel the products with substantial velocity into and through cutting engagement with knife elements of a so-called water knife fixture mounted along the length of a fluid flow passage. An improved deceleration conduit defines a continuation of the fluid flow passage at a downstream side of the water knife, and has a tapered shape which expands in cross section relative to a conduit centerline at an angle not exceeding 9 and preferably on the order of about 2 to about 3.
A system for separating cut food products includes a flow inlet, a flow outlet, and at least one drum connecting the flow inlet and the flow outlet. The flow inlet may be oriented to direct the cut food product tangentially into the at least one drum. The flow inlet may be oriented to direct the cut food product into the at least one drum at a right angle to a longitudinal axis of the at least one drum. The at least one drum may be a plurality of drums including a first drum having the flow inlet and a second drum having the flow outlet. The system may include a passageway providing fluid communication from the first drum to the second drum. The passageway may include a tapered section. The flow inlet may be aligned with the flow outlet.
A system for separating cut food products includes a flow inlet, a flow outlet, and at least one drum connecting the flow inlet and the flow outlet. The flow inlet may be oriented to direct the cut food product tangentially into the at least one drum. The flow inlet may be oriented to direct the cut food product into the at least one drum at a right angle to a longitudinal axis of the at least one drum. The at least one drum may be a plurality of drums including a first drum having the flow inlet and a second drum having the flow outlet. The system may include a passageway providing fluid communication from the first drum to the second drum. The passageway may include a tapered section. The flow inlet may be aligned with the flow outlet.
- Boise ID, US Mike Hamann - Caldwell ID, US James Englar - Nampa ID, US
International Classification:
A23L 1/216 B02C 18/36 A23N 15/00
Abstract:
A ricer plate for use in a ricing system configured for forcing cooked potato pieces, including potato peel and potato starch, against and through the ricer plate, includes a plate, having a thickness, a center and a perimeter. A plurality of substantially linear, elongate slots are disposed in the plate, extending through the thickness of the plate. Each slot is aligned at an angle relative to a radial line extending from the center, and has a width of at least about 1/10 inch and a length that is at least about three times the width. The slots are suitably shaped to pass a portion of potato peel with the potato starch.
A rotary knife fixture configured for use in a water knife cutting system includes a ring, defining an internal aperture, and at least two spaced, angularly offset, parallel groups of parallel helically twisted cutting blades, extending across the aperture. The ring is configured to be placed in fluid communication with a hydraulic feed conduit of the water knife cutting system and for rotary motion about a rotational axis extending through the aperture. The groups of parallel blades are oriented generally perpendicular to the rotational axis. Each cutting blade has a sharpened cutting edge at one side thereof and is twisted generally about a center point thereof to define a pair of cutting edges oriented in opposite-facing circumferential directions. A vegetable product, fed through the aperture at a product speed, and with the rotary knife fixture rotating at a rotational speed, is substantially simultaneously cut into multiple helically twisted pieces.