A method for simulating a compressor of a gas turbine may generally include determining a predicted pressure ratio and a predicted mass flow of the compressor based on a model of the gas turbine, monitoring an actual pressure ratio and an actual mass flow of the compressor, determining difference values between at least one of the predicted pressure ratio and the actual pressure ratio and the predicted mass flow and the actual mass flow, modifying the difference values using an error correction system to generate a compressor flow modifier and using the compressor flow modifier to adjust the predicted pressure ratio and the predicted mass flow.
Methods And Systems For Performing Integrated Analyses, Such As Integrated Analyses For Gas Turbine Power Plants
Cedric Chow - Rego Park NY, US Kelly Crotty - Greenville SC, US John Drohan - Greer SC, US James Fehlberg - Simpsonville SC, US Arlie Martin - Simpsonville SC, US Thad Morton - Greenville SC, US Todd Nemec - Guilderland NY, US David Pesetsky - Greenville SC, US Robert Priestley - Ballston Lake NY, US Ming Zhou - Reading MA, US
International Classification:
G01B003/44 G01B003/52 G06F019/00
US Classification:
702/034000
Abstract:
Automated systems for performing integrated analyses. In one embodiment, an integrated analysis system can be used to comprehensively evaluate the effects of changes in hardware configuration or operating conditions on gas turbine power plant performance and economics. The system evaluates these changes by concurrently analyzing a number of different aspects of the power plant while ensuring that the data used in each of the different analyses is consistent. These analyses can include turbine and compressor aerodynamic analysis, cooling and leakage flow analysis, heat transfer analysis, part life analysis, heat balance analysis, cost analysis and overall power plant performance and economic analysis.
A system includes a model-based control unit configured to receive a lower heating value for a liquid fuel having a composition. The processor is configured to determine a specific gravity, a hydrocarbon ratio, or both, for the liquid fuel based, at least in part, on the lower heating value of the liquid fuel. The processor is configured to compare the hydrocarbon ratio, the specific gravity, and/or the lower heating value of the liquid fuel to a collection of hydrocarbon ratios, specific gravities, and/or lower heating values for a plurality of mixtures of methane and ethylene. The processor is configured to identify a mixture of methane and ethylene from the collection that best matches the hydrocarbon ratio, the specific gravity, and/or the lower heating value of the liquid fuel and configured to use the identified mixture of methane and ethylene as a model for the composition of the liquid fuel.