A microwave isolator including a driving circuit and a receiving circuit, wherein the driving circuit receives an input signal from a first isolated circuit and generates a corresponding radio frequency (RF) signal and the receiving circuit detects and decodes the corresponding RF signal and provides a corresponding output signal to a second isolated circuit. The driving circuit contains an oscillator for generating the corresponding RF signal based on the input signal from the first isolated circuit, a transmitting antenna for transmitting the corresponding RF signal, and a microwave switch interposed between the oscillation means and the transmitting antenna for switching the RF signal to the antenna. The receiving circuit contains a receiving antenna to receive the corresponding RF signal and means for detecting and decoding the received corresponding RF signal and providing the corresponding output signal to the second isolated circuit.
Improved systems and methods for mapping are provided. In one embodiment, a system for mapping is provided. The system comprises a rangefinder adapted to output range measurements; an inertial sensor adapted to capture inertial measurements including inertial forces acting on the rangefinder and the attitude of the rangefinder; and a processor coupled the rangefinder and the inertial sensor and adapted to receive a set of range measurements from the rangefinder and inertial measurements from the inertial sensor. The processor is adapted to produce a virtual room reconstruction based on the set of range measurements from the rangefinder and inertial measurements from inertial sensor.
John B. McKitterick - Columbia MD, US Richard A. Burne - Ellicott City MD, US
Assignee:
Honeywell International Inc. - Morristown NJ
International Classification:
G08B 13/00
US Classification:
340541, 340550, 340565, 250341
Abstract:
A method for detecting significant events using neuronal sensor networks is provided. The method includes monitoring an environment surrounding a plurality of sensors for the presence of an event, when one or more events are detected, integrating the detected events over space and time using one or more collectors responsive to the plurality of sensors, determining when the one or more events are significant events and identifying and tracking significant events using processors responsive to the one or more collectors.
Improved systems and methods for mapping are provided. In one embodiment, a system for mapping is provided. The system comprises a rangefinder adapted to output range measurements; an inertial sensor adapted to capture inertial measurements including inertial forces acting on the rangefinder and the attitude of the rangefinder; and a processor coupled the rangefinder and the inertial sensor and adapted to receive a set of range measurements from the rangefinder and inertial measurements from the inertial sensor. The processor is adapted to produce a virtual room reconstruction based on the set of range measurements from the rangefinder and inertial measurements from inertial sensor.
A communication system is provided. The communication system comprises a remote transmitter, at least one central unit, and M number of nodes distributed in a coverage area to form a distributed array antenna in order to receive signals from the at least one remote transmitter and retransmit the received signals to the at least one central unit such that when combined the retransmitted signals form a composite signal with a signal-to-noise ratio (SNR) array gain of approximately M and the time to receive the retransmitted signals at the at least one central unit is increased by an inflation rate of approximately M or less.
Apparatus And Method For Determining The Position Of A Vehicle With Respect To A Terrain
Timothy John Case - Marriottsville MD, US John B. Mckitterick - Columbia MD, US Randy Black - Glendale AZ, US
Assignee:
Honeywell International Inc. - Morristown NJ
International Classification:
G01C 21/30
US Classification:
701210, 701123, 701701, 701207
Abstract:
Methods and apparatus are provided for determining a position of a vehicle with respect to a terrain. The method comprises accumulating data received from at least one sensor device regarding the occupancy of a spatial region between the vehicle and a first geographic region of the terrain, generating an evidence grid that describes the occupancy of the spatial region, identifying the position of the first geographic region of the terrain based on the evidence grid and previously compiled reference data, and determining the position of the vehicle based on the position of the first geographic region of the terrain with respect to the previously compiled reference data.
Construction Of Evidence Grid From Multiple Sensor Measurements
A system includes at least one sensor device configured to transmit a first detection signal over a first spatial region and a second detection signal over a second spatial region. The second region has a first sub-region in common with the first region. The system further includes a processing device configured to assign a first occupancy value to a first cell in an evidence grid. The first cell represents the first sub-region, and the first occupancy value characterizes whether an object has been detected by the first detection signal as being present in the first sub-region. The processing device is further configured to calculate, based on the first and second detection signals, the probability that the first occupancy value accurately characterizes the presence of the object in the first sub-region, and generate a data representation of the first sub-region based on the probability calculation.
Systems And Methods For Using An Evidence Grid To Eliminate Ambiguities In An Interferometric Radar
A system includes an Interferometric radar that transmits a first detection signal over a first spatial region and a second detection signal over a second spatial region. The second region has a first sub-region in common with the first region. The system further includes a processing device that assigns a first occupancy value to a first cell in an evidence grid. The first cell represents the first sub-region, and the first occupancy value characterizes whether an object has been detected by the first detection signal as being present in the first sub-region. The processing device calculates, based on the first and second detection signals, the probability that the first occupancy value accurately characterizes the presence of the object in the first sub-region, and generates a data representation of the first sub-region based on the probability calculation.