Abstract:
A molecular sieve is made by reacting an ammonium-exchanged low silica X-type zeolite precursor with lithium hydroxide, at a pressure of about 200 millibar or less, and at a temperature of about 60 or less. The zeolite precursor is preferably an X-type zeolite, in which the silicon to aluminum atomic ratio is less than about 1.02. The lithium is provided in an amount which is stoichiometrically equivalent to the amount of ammonium present. The molecular sieve is especially useful in separating air into components using PSA or VPSA processes, and has improved productivity and yield as compared with materials of the prior art. The advantages of the molecular sieve enable it to be provided in the form of beads having relatively large diameter, which reduces the pressure drop across the adsorber bed, and reduces required energy consumption.