Expression vectors are disclosed that are comprised of (a) one or more silencer elements and conditionally inducible elements to form silencer-inducible regions and (b) promoters in operative linkage upstream of at least one expressed region. The expression vector thereby regulates expression of at least one downstream region by conditional silencing in which an expressed DNA region of a gene is transcribed to produce RNA transcripts, which may or may not be translated to produce polypeptides. Genetically engineered mammalian cells and non-human mammals can be made using such expression vectors through transfection and transgenesis techniques. Moreover, processes of making and using the aforementioned products are disclosed (e. g. , the expression vector may be used diagnostically, therapeutically, or prophylactically).
Hypoxia-acidosis-associated cell death is mediated by BNIP3, a member of the Bcl-2 family of apoptosis-regulating proteins. Chronic hypoxia induced the expression and accumulation of BNIP3 mRNA and protein in cardiac myocytes but acidosis was required to activate the death pathway. Acidosis stabilized BNIP3 protein and increased the association with mitochondria. Cell death by hypoxia-acidosis was blocked by pretreatment with antisense BNIP3 oligonucleotides. The pathway included extensive DNA fragmentation and opening of the mitochondrial permeability transition pore but no apparent caspase activation. Overexpression of wild type BNIP3, but not a translocation-defective mutant activated cardiac myocyte death when the myocytes were acidotic or hypoxic.
Molecular Switch For Regulating Mammalian Gene Expression
Expression vectors are disclosed that are comprised of (a) one or more silencer elements and conditionally inducible elements to form silencer-inducible regions and (b) promoters in operative linkage upstream of at least one expressed region. The expression vector thereby regulates expression of at least one downstream region by conditional silencing in which an expressed DNA region of a gene is transcribed to produce RNA transcripts, which may or may not be translated to produce polypeptides. Genetically engineered mammalian cells and non-human mammals can be made using such expression vectors through transfection and transgenic techniques. Moreover, processes of making and using the aforementioned products are disclosed (e.g., the expression vector may be used diagnostically, therapeutically, or prophylactically).
Methods and compositions for the treatment of hypoxia associated disorders by directional angiogenesis/arteriogenesis. Conditionally silenced vectors expressing a therapeutic molecule under hypoxic conditions avoid chaotic vascularization and allow for the orderly growth of new vessels into damaged tissue.
Methods, Compositions, Cells, And Kits For Treating Ischemic Injury
The methods, compositions, cells and kits described herein are based on the discovery that stem cells, when injected into ischemic tissue of mammals, can be protected by preconditioning of the ischemic tissue with hypoxia-regulated human VEGF and human IGF-1. Methods, compositions, cells and kits for treating tissue injured by ischemia or at risk of ischemic injury in a subject are thus described herein.
Compositions, Cells, Kits And Methods For Autologous Stem Cell Therapy
Described herein are compositions, kits and methods for stimulating angiogenic functions of stem cells and/or progenitor cells having pro-angiogenic potential (e.g., endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs)) before transplantation (e.g., ex vivo cell therapy) based on the discovery that functional recovery of CD34+ cells from coronary artery disease (CAD) patients is improved by transfection of antagomirs against one or more miRs of a plurality of miRs identified to be over-expressed in cells from CAD patients. Described herein are methods to recover the functions of EPCs isolated from patients with cardiovascular disease (e.g., CAD or peripheral artery disease (PAD)) by bioengineering the cells with antagomirs and/or premirs to specific micro-RNAs. The bioengineered cells can then be used to treat patients with ischemic or ischemic-related disease (e.g., CAD or PAD) by autologous stem cell therapy.
- Miami FL, US KEITH A. WEBSTER - Key Biscayne FL, US
International Classification:
C12N 7/00 C12N 15/86 C07K 14/515
Abstract:
Methods and compositions for the treatment of hypoxia associated disorders by directional angiogenesis/arteriogenesis. Conditionally silenced vectors expressing a therapeutic molecule under hypoxic conditions avoid chaotic vascularization and allow for the orderly growth of new vessels into damaged tissue.
Methods, Compositions, Cells, And Kits For Treating Ischemic Injury
- Miami FL, US Keith A. Webster - Key Biscayne FL, US
International Classification:
A61K 38/30 A61K 38/18 A61K 48/00 A61K 35/28
US Classification:
424 932, 424 937
Abstract:
The methods, compositions, cells and kits described herein are based on the discovery that stem cells, when injected into ischemic tissue of mammals, can be protected by preconditioning of the ischemic tissue with hypoxia-regulated human VEGF and human IGF-1. Methods, compositions, cells and kits for treating tissue injured by ischemia or at risk of ischemic injury in a subject are thus described herein.
Resumes
Assistant Director Of Administration At Vi Government Department Of Public Works
, so the team is remembered for its free-throw shooting. But we had terrific players, including Joe Carrabino, who became the programs career leading scorer; Bob Ferry, Danny Ferrys older brother; Arne Duncan, now the United States secretary of education; point guard Pat Smith; and a terrific shooter in Keith Webster, a freshman that year.