Lannie Dietle - Sugar Land TX Manmohan S. Kalsi - Sugar Land TX
Assignee:
Kalsi Engineering, Inc. - Sugar Land TX
International Classification:
F16J 1532
US Classification:
277559, 277551
Abstract:
A hydrodynamically lubricated rotary seal or packing assembly which provides environmental exclusion, lubricant retention and hydrodynamic interfacial lubrication in applications where the environment pressure may be higher than the lubricant pressure. The invention is particularly suitable for oilfield drilling swivels and rotary mining equipment, and for applications such as artificial lift pump stuffing box assemblies and centrifugal pumps where a rotating shaft penetrates a pressurized reservoir which is filled with abrasive-laden liquids, mixtures or slurries. The invention provides a unique sealing mechanism which controls high pressure abrasive fluids, and which accomplishes hydrodynamic lubricant pumping activity to maintain efficient lubrication at the dynamic sealing interfaces thereof to thus significantly enhance service life. The invention provides a non-circular support surface which efficiently supports the non-circular flank of a hydrodynamic rotary sealing element against environmental pressure, thereby maintaining the integrity of the non-circular lubricant edge and the abrupt circular environment edge of the sealing element.
Manmohan Singh Kalsi - Houston TX Patricio Daniel Alvarez - Richmond TX Jaw-Kuang Wang - Sugar Land TX
Assignee:
Kalsi Engineering, Inc. - Sugar Land TX
International Classification:
F16K 312
US Classification:
251326, 251327
Abstract:
A wedge gate valve having a valve body defining a valve chamber and flow passages and upwardly diverging circular seat surfaces of circular, flat configuration and defining seat planes. A valve disk or wedge having downwardly converging sealing surfaces is movable within said valve chamber between open and closed positions for controlling flow through the valve. Pressure boundary plates connected by hubs to the valve disk define the sealing surfaces of the disk and have bottom corners that establish line contact with the downstream seat surface and prevent any portion of said sealing surfaces of said valve disk from crossing the sealing plane of the downstream seat in the event of flow responsive downstream movement of the valve disk during its opening and closing movement. Guide ears of the disk are provided with flexible upper and lower extremities and rounded or chamfered inner end surfaces to minimize localized peak contact stress with disk guide rails of the valve body. The center section of the disk is rendered flexible by the provision of an internal transverse cavity that extends completely through the center section or is located centrally of the center section to define flexible walls between the hubs to thus provide for disk flexibility for overcoming the tendency for disk binding.
Hydrodynamic Seal With Improved Extrusion Abrasion And Twist Resistance
Lannie L. Dietle - Sugar Land TX Manmohan S. Kalsi - Houston TX
Assignee:
Kalsi Engineering, Inc. - Sugar Land TX
International Classification:
F16J 1532
US Classification:
277560, 277549, 277559, 277584
Abstract:
A hydrodynamically lubricating seal has a generally circular seal body defining a static sealing surface and having a dynamic sealing lip projecting from the seal body and defining a dynamic sealing surface, a non-hydrodynamic edge and a non-circular angulated flank having a flank angle. The flank angle and the dynamic sealing surface have theoretical intersection being positioned from the non-hydrodynamic edge by a variable distance having a minimum dimension being greater than {fraction (1/16)} inch and also having a maximum dimension. The circular seal body defines a theoretical center-line and, when viewed in a longitudinal cross-section taken along the theoretical center-line, a hydrodynamic inlet curve is shown that blends the theoretical intersection between the flank angle and the dynamic sealing surface. This hydrodynamic inlet curve is tangent to the dynamic sealing surface at a location of tangency and has a rate of curvature less than the rate of curvature of a รข inch radius.
A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements.
Manmohan S. Kalsi - Houston TX Lannie M. Dietle - Houston TX William Conroy - Pearland TX John E. Schroeder - Richmond TX
Assignee:
Kalsi Engineering, Inc. - Sugar Land TX
International Classification:
F16J 1532
US Classification:
277559, 277500, 277549
Abstract:
A rotary seal is provided that operates hydrodynamically in response to relative rotation even when subjected to exposure to a high fluid pressure from either side, and provides low breakout and running torque. A dynamic sealing lip having a wavy geometry provides hydrodynamic lubrication in response to relative rotation when little or no differential pressure is acting across the seal. When differential pressure exists, controlled fluid pressure-induced distortion results in a distorted dynamic sealing lip configuration that is suitable for hydrodynamic lubrication, regardless of which direction the differential pressure acts from.
Lannie Dietle - Houston TX 77082 Manmohan S. Kalsi - Houston TX 77041 Jeffrey D. Gobeli - Houston TX 77042
International Classification:
F16J 1532
US Classification:
277559, 277560
Abstract:
A hydrodynamically lubricating seal has a generally circular seal body defining a static sealing surface and having a dynamic sealing lip projecting from the seal body for establishing sealing relation with a relatively rotatable surface. When compressed against a relatively rotatable surface, dynamic sealing lip defines a hydrodynamic geometry which wedges a film of lubricating fluid into the interface between the seal and the relatively rotatable surface in response to relative rotation. The dynamic sealing lip geometry maintains interfacial contact pressure within the dynamic sealing interface for efficient hydrodynamic lubrication and environmental exclusion, which enhances lubrication and environmental exclusion while permitting relatively high initial compression and relatively low torque. In abrasive environments, the improved exclusionary action results in a dramatic reduction of seal and shaft wear, compared to prior art, and provides a significant increase in seal life. The invention also increases seal life by making higher levels of initial compression possible, compared to prior art, without compromising hydrodynamic lubrication.
Hydrodynamic Rotary Seal With Opposed Tapering Seal Lips
Jeffrey D. Gobeli - Houston TX 77042 Lannie Dietle - Houston TX 77082 Manmohan S. Kalsi - Houston TX 77041
International Classification:
F16J 1532
US Classification:
277549, 277559
Abstract:
A hydrodynamically lubricating rotary seal for partitioning a lubricant from an environment has a generally circular seal body and sloping, generally opposed projecting static and dynamic sealing lips. The dynamic sealing lip is provided for establishing compressed sealing relation with a relatively rotatable surface, and has a sloping dynamic sealing surface that varies in width, and also has a hydrodynamic inlet curvature that varies in position around the circumference of the seal. When the seal is installed against a relatively rotatable surface, the dynamic sealing lip deforms to define a variable width interfacial contact footprint against the relatively rotatable surface that is wavy on the lubricant side, and wedges a film of lubricating fluid into the interface in response to relative rotation. The environment edge of the interfacial contact footprint is substantially circular, and therefore does not produce a hydrodynamic wedging action in response to relative rotation.
Jeffrey D. Gobeli - Houston TX, US Lannie Dietle - Houston TX, US Manmohan S. Kalsi - Houston TX, US
Assignee:
Kalsi Engineering, Inc. - Sugar Land TX
International Classification:
F16J 15/32
US Classification:
277549, 277559
Abstract:
A hydrodynamically lubricating rotary seal for partitioning a lubricant from an environment has a generally circular seal body, a sloping dynamic sealing lip, and an energizer. The dynamic sealing lip is provided for establishing compressed sealing relation with a relatively rotatable surface, and has a sloping dynamic sealing surface that varies in width, and also has a hydrodynamic inlet curvature that varies in position around the circumference of the seal. When the seal is installed against a relatively rotatable surface, the dynamic sealing lip deforms to define a variable width interfacial contact footprint against the relatively rotatable surface that is wavy on the lubricant side, and wedges a film of lubricating fluid into the interface in response to relative rotation. The environment edge of the interfacial contact footprint is substantially circular, and therefore does not produce a hydrodynamic wedging action in response to relative rotation.
Frances Deschamps, Jennifer Mabbott, Marilyn Harding, Lorraine Heisler, Kelly Sebastian, Christina Beaudette, Sandra Evans, Judith Eberts, Bill Radigan, Helen Klokman