Lewis M. Fraas - Issaquah WA Mark J. O'Neill - Dallas TX
Assignee:
Entech, Inc. - Dallas TX
International Classification:
H01L 31052 G02B 308
US Classification:
136246
Abstract:
A novel low-cost solar photovoltaic module using line-focus lenses and photovoltaic receivers incorporating high-performance photovoltaic cells is described. It consists of an array of linear arched Fresnel lenses with a linear photovoltaic cell receiver located along the focal line of each lens. The lens consists of a protective superstrate with molded silicone Fresnel grooves on its inner surface. The photovoltaic cell receiver consists of high efficiency cells interconnected in a string with a solid secondary optical element adhesive bonded to the cells. The entrance aperture of each secondary optical element is rectangular in shape and the optical secondaries are butted up against each other in a line to form a continuous entrance aperture along the focal line. In addition to providing more concentrated sunlight, the solid optical secondaries shield the cells against radiation damage.
Line-Focus Photovoltaic Module Using Stacked Tandem-Cells
Lewis M. Fraas - Issaquah WA Mark J. O'Neill - Keller TX
International Classification:
H01L 31052
US Classification:
136246
Abstract:
A novel low-cost solar photovoltaic module using line-focus lenses and photovoltaic receivers incorporating high-performance tandem cell-stacks is described. It consists of an array of linear arched Fresnel lenses with a linear tandem-cell receiver located along the focal line of each lens. The lens consists of a glass protective superstrate with molded silicone Fresnel grooves on its inner surface. The tandem cell receiver consists of high efficiency cell-stacks interconnected in a string with a secondary optical element adhesive bonded to each cell-stack. The entrance aperture of each secondary optical element is rectangular in shape and the optical secondaries are butted up against each other in a line to form a continuous entrance aperture along the focal line. Each optical secondary provides for sunlight concentration in two dimensions so that its base bonded to the cell-stack is smaller in both the direction along the focal line as well as perpendicular to it. The gaps at the base between optical secondaries provide room for electrically interconnecting the cell string.