A fiber optic cable assembly includes a main fiber optic cable and a pre-connectorized fiber optic cable assembly. Optical fibers of the main fiber optic cable are mass fusion spliced to optical fibers of the pre-connectorized fiber optic cable assembly thereby forming a mass fusion splice. The mass fusion splice is positioned within an outer jacket of the main fiber optic cable. A reinforcing member and a protective transition member are applied to make the fiber optic cable assembly. A method of making the fiber optic cable assembly is also disclosed.
Method Of Directly Molding Ferrule On Fiber Optic Cable
Michael James Ott - Le Sueur MN, US Thomas P. Huegerich - Manchester Center VT, US
Assignee:
ADC Telecommunications, Inc. - Berwyn PA
International Classification:
B29D 11/00
US Classification:
264 125, 264 17, 264 27
Abstract:
A method of directly molding a fiber optic ferrule on an end of a fiber optic cable is disclosed. The method preferably includes stripping a cable jacket and/or a buffer layer from optical fibers of the fiber optic cable and trimming the optical fibers with a laser thereby creating trimmed ends on the optical fibers. The optical fibers and preferably a pin assembly are held near the end of the fiber optic cable by an optical fiber and pin locator. The optical fiber and pin locator can statically or dynamically hold and position the optical fibers and pin assembly. After the optical fibers and/or the pin assembly are positioned, a fixture is attached to the trimmed ends of the optical fibers and/or the pin assembly thereby preserving their relative position to each other. After the fixture is attached, the optical fiber and pin locator is removed, and the end of the fiber optic cable with the attached fixture is placed into a mold cavity. A molding material is injected into the mold cavity thereby overmolding a substantial portion of the end of the fiber optic cable and thereby creating a molded body of the fiber optic ferrule.
A communications cable includes two or more optical fibers embedded in a jacket which supports the fibers at a predetermined center-to-center distance. The jacket including at least one reference surface oriented at a predetermined angle to the reference plane. The communications cable may also include one or more electrical conductor. Apparatus is provided for preparing the ends of the optical fibers without use of a ferrule, and for transmitting multiple electrical and/or optical signals over the communications cable.
Fiber Optic Ferrule Assembly With Transitioning Insert
A fiber optic ferrule assembly includes a ferrule with an axial passage, an insert with an axial passage, and a hub with an axial passage. The axial passage of the ferrule includes a first diameter portion having a diameter of at least 125 microns, and the axial passage of the insert includes a second diameter portion having a diameter of at least 250 microns. The axial passage of the hub holds at least a portion of the ferrule and the insert. The fiber optic ferrule assembly terminates a fiber optic cable including an inner fiber, an outer coating around the inner fiber, and a buffer layer around the outer coating. The first diameter portion only receives the inner fiber and no outer coating, and the second diameter portion receives at least a portion of an exposed portion of the outer coating and no buffer layer. Minimal epoxy is applied around a transition area near an end of the outer coating. A method of assembling a terminated fiber optic cable is also provided.
Kenneth Allen Skluzacek - Belle Plaine MN, US Michael D. Schroeder - Webster MN, US Michael James Ott - Chaska MN, US Randall Wendland - New Prague MN, US Ponharith Nhep - Savage MN, US Steven C. Zimmel - Minneapolis MN, US
International Classification:
G02B 6/36 B23P 11/00
US Classification:
385 81, 385 78, 29876
Abstract:
A fiber optic connector includes a front housing having sidewalls each defining a slot and a rear insert with a pair of locking flanges extending radially away, the locking flanges configured to snap-fit into the slots, each locking flange defining a front face and a rear face, the radially outermost portion of the rear face defining an edge, the edge being the rearmost extending portion of the locking flange. Another fiber optic connector includes a front housing defining a front opening at a front end, a circular rear opening at a rear end, and an internal cavity extending therebetween. A rear insert including a generally cylindrical front portion is inserted into the front housing through the circular rear opening, the front portion defining at least one longitudinal flat configured to reduce the overall diameter of the generally cylindrical front portion configured to be inserted into the front housing.
Testing Of Optical Cable Using Optical Time Domain Reflectometry
Methods for testing optical equipment are disclosed. One method includes connecting an optical time domain reflectometer to optical equipment to be tested, the optical equipment including at least one optical connector. The method includes injecting an optical signal onto the optical equipment from the optical time domain reflectometer, and observing an amount of reflected light at the connector. Based on the observed reflected light, an amount of loss attributable to the optical equipment is determined.
Michael James Ott - Chaska MN, US David Patrick Murray - Bishopston, GB
International Classification:
G02B 6/44
US Classification:
385 78, 385 76
Abstract:
A fiber optic cassette including a body defining a front and an opposite rear and an enclosed interior. A cable entry location is defined in the body for a cable to enter the interior of the cassette. The cable which enters at the cable entry location is attached to the cassette body and the fibers are extended into the cassette body and form terminations at connectors. The connectors are connected to adapters located at the front of the cassette. A front side of the adapters defines termination locations for cables to be connected to the fibers connected at the rear of the adapters. A cable including a jacket, a strength member, and fibers enters the cassette. The strength member is crimped to a crimp tube and is mounted to the cassette body, allowing the fibers to extend past the crimp tube into the interior of the cassette body. A strain relief boot is provided at the cable entry location.
Tools And Methods For Preparing A Ferrule-Less Optical Fiber Connector
A tool set for terminating an optical fiber with a fiber optic connector includes a crimping tool and a polishing tool. The crimping tool includes a locating feature for locating a housing of the fiber optic connector, a stop for locating an end of an optical fiber relative to the housing, and at least one anvil for crimping a crimp of the fiber optic connector to secure a position of the optical fiber relative to the housing. The polishing tool includes a locating feature for locating the housing and thereby locating the end of the optical fiber and a seat for activating a compression member of the fiber optic connector thereby securing the end of the optical fiber to the polishing tool.
Dr. Ott graduated from the Wake Forest University School of Medicine in 1997. He works in Eglin AFB, FL and specializes in Pulmonary Critical Care Medicine.
Dr. Ott graduated from the University of New England College of Osteopathic Medicine in 1996. He works in Wilmington, NC and specializes in Emergency Medicine. Dr. Ott is affiliated with New Hanover Regional Medical Center and Pender Memorial Hospital.
Silverwood Elementary School Concord CA 1968-1974, Pine Hollow Middle School Concord CA 1974-1975, Project Outreach Continuation School Concord CA 1975-1976