Michael D Perrone

age ~41

from Chatham, NJ

Also known as:
  • Mike Perrone

Michael Perrone Phones & Addresses

  • Chatham, NJ
  • Hoboken, NJ
  • Morristown, NJ
  • 1 Jefferson Dr, Flanders, NJ 07836 • 9739609137

Work

  • Company:
    Exotic performance
  • Address:
    135 Linden Ave, Elmwood Park, NJ 07407
  • Phones:
    2018732102
  • Position:
    Executive officer
  • Industries:
    Legal Services

Us Patents

  • Handwriting Recognition System And Method Using Compound Characters For Improved Recognition Accuracy

    view source
  • US Patent:
    6567548, May 20, 2003
  • Filed:
    Jan 29, 1999
  • Appl. No.:
    09/240362
  • Inventors:
    Krishna S. Nathan - New York NY
    Michael P. Perrone - Yorktown NY
    John F. Pitrelli - Danbury CT
  • Assignee:
    International Business Machines Corporation - Armonk NY
  • International Classification:
    G06K 918
  • US Classification:
    382186, 382159, 382179, 382187
  • Abstract:
    A handwriting recognition system and method whereby various character sequences (which are typically âslurredâ together when handwritten) are each modelled as a single character (âcompound character modelâ) so as to provide increased decoding accuracy for slurred handwritten character sequences. In one aspect of the present invention, a method for generating a handwriting recognition system having compound character models comprises the steps of: providing an initial handwriting recognition system having individual character models; collecting and labelling a set of handwriting data; aligning the labelled set of handwriting data; generating compound character data using the aligned handwriting data; and retraining the initial recognition system with the compound character data to generate a new recognition system having compound character models. Once these compound character models are trained, they may be used to accurately decode slurred handwritten character sequences for which compound character models were previously generated. Once recognized, the compound characters are expanded into the constituent individual characters comprising the compound character.
  • Handwritten Word Recognition Using Nearest Neighbor Techniques That Allow Adaptive Learning

    view source
  • US Patent:
    7343041, Mar 11, 2008
  • Filed:
    Feb 19, 2002
  • Appl. No.:
    10/079763
  • Inventors:
    Thomas Yu-Kiu Kwok - Washington Township NJ, US
    Michael Peter Perrone - Yorktown Heights NY, US
  • Assignee:
    International Business Machines Corporation - Armonk NY
  • International Classification:
    G06K 9/00
    G06K 9/62
  • US Classification:
    382187, 382224
  • Abstract:
    A handwritten word is transcribed into a list of possibly correct transcriptions of the handwritten word. The list contains a number of text words, and this list is compared with previously stored set of lists of text words. Based on a metric, one or more nearest neighbor lists are selected from the set. A decision is made, according to a number of combination rules, as to which text word in the nearest neighbor lists or the recently transcribed list is the best transcription of the handwritten word. This best transcription is selected as the appropriate text word transcription of the handwritten word. The selected word is compared to a true transcription of the selected word. Machine learning techniques are used when the selected and true transcriptions differ. The machine learning techniques create or update rules that are used to determine which text word of the nearest neighbor lists or the recently transcribed list is the correct transcription of the handwritten word.
  • Retrieving Handwritten Documents Using Multiple Document Recognizers And Techniques Allowing Both Typed And Handwritten Queries

    view source
  • US Patent:
    7627596, Dec 1, 2009
  • Filed:
    Feb 19, 2002
  • Appl. No.:
    10/079741
  • Inventors:
    Thomas Yu-Kiu Kwok - Washington Township NJ, US
    James Randal Moulic - Poughkeepsie NY, US
    Kenneth Blair Ocheltree - Ossining NY, US
    Michael Peter Perrone - Yorktown Heights NY, US
    John Ferdinand Pitrelli - Danbury CT, US
    Eugene Henry Ratzlaff - Hopewell Junction NY, US
    Gregory Fraser Russell - Yorktown Heights NY, US
    Jayashree Subrahmonia - White Plains NY, US
  • Assignee:
    International Business Machines Corporation - Armonk NY
  • International Classification:
    G06F 17/00
  • US Classification:
    707102, 715268
  • Abstract:
    The techniques in the present invention allow both text and handwritten queries, and the queries can be single-word or multiword. Generally, each handwritten word in a handwritten document is converted to a document stack of words, where each document stack contains a list of text words and a word score of some type for each text word in the list. The query is also converted to one or more stacks of words. A measure is determined from each query and document stack. Documents that meet search criteria in the query are then selected based on the query and the values of the measures. The present invention also performs multiple recognitions, with multiple recognizers, on a handwritten document to create multiple recognized transcriptions of the document. The multiple transcriptions are used for document retrieval. In another embodiment, a single transcription is created from the multiple transcriptions, and the single transcription is used for document retrieval.
  • Handwritten Word Recognition Using Nearest Neighbor Techniques That Allow Adaptive Learning

    view source
  • US Patent:
    7697760, Apr 13, 2010
  • Filed:
    Jan 11, 2008
  • Appl. No.:
    11/972913
  • Inventors:
    Thomas Yu-Kiu Kwok - Washington Township NJ, US
    Michael Peter Perrone - Yorktown Heights NY, US
  • Assignee:
    International Business Machines Corporation - Armonk NY
  • International Classification:
    G06K 9/00
    G06K 9/18
    G06K 9/72
  • US Classification:
    382186, 382187, 382229
  • Abstract:
    A handwritten word is transcribed into a list of possibly correct transcriptions of the handwritten word. The list contains a number of text words, and this list is compared with previously stored set of lists of text words. Based on a metric, one or more nearest neighbor lists are selected from the set. A decision is made, according to a number of combination rules, as to which text word in the nearest neighbor lists or the recently transcribed list is the best transcription of the handwritten word. This best transcription is selected as the appropriate text word transcription of the handwritten word. The selected word is compared to a true transcription of the selected word Machine learning techniques are used when the selected and true transcriptions differ. The machine learning techniques create or update rules that are used to determine which text word of the nearest neighbor lists or the recently transcribed list is the correct transcription of the handwritten word.
  • Parallel Computing Of Line Of Sight View-Shed

    view source
  • US Patent:
    8396256, Mar 12, 2013
  • Filed:
    Mar 25, 2010
  • Appl. No.:
    12/731579
  • Inventors:
    Ligang Lu - New City NY, US
    Brent Paulovicks - Danbury CT, US
    Michael Peter Perrone - Yorktown Heights NY, US
    Vadim Sheinin - Mount Kisco NY, US
  • Assignee:
    International Business Machines Corporation - Armonk NY
  • International Classification:
    G06K 9/00
    G06F 15/80
    G01C 1/00
  • US Classification:
    382113, 345505, 356145
  • Abstract:
    Techniques are disclosed for parallel computing of a line of sight (LoS) map (e. g. , view-shed) in a parallel computing system. For example, a method for computing an LoS map comprises the following steps. Data representing at least one image is obtained. An observation point in the at least one image is identified. A portion of the data that is associated with a given area in the image is partitioned into a plurality of sub-areas. The plurality of sub-areas are assigned to a plurality of processor elements of a parallel computing system, respectively, such that the data associated with each one of the plurality of sub-areas is processed independent from the data associated with each other of the plurality of sub-areas, wherein results of the processing by the processor elements represents the LoS map. The parallel computing system may be a multicore processor.
  • Rtm Seismic Imaging Using Combined Shot Data

    view source
  • US Patent:
    20120316785, Dec 13, 2012
  • Filed:
    Feb 1, 2012
  • Appl. No.:
    13/363999
  • Inventors:
    Ligang Lu - New City NY, US
    Michael P. Perrone - Yorktown Heights NY, US
  • Assignee:
    INTERNATIONAL BUSINESS MACHINES CORPORATION - Armonk NY
  • International Classification:
    G06F 19/00
  • US Classification:
    702 2
  • Abstract:
    A system, method and computer program product for seismic imaging implements a seismic imaging algorithm utilizing Reverse Time Migration technique requiring large communication bandwidth and low latency to convert a parallel problem into one solved using massive domain partitioning. Several aspects of the imaging problem are addressed, including very regular and local communication patterns, balanced compute and communication requirements, scratch data handling and multiple-pass approaches. The partitioning of the velocity model into processing blocks allows each sub-problem to fit in a local cache, increasing locality and bandwidth and reducing latency. The RTM seismic data processing utilizes data that includes combined shot data, i.e., shot data selected from amongst a plurality of shots that are combined at like spatial points of the volume.
  • Rtm Seismic Imaging Using Incremental Resolution Methods

    view source
  • US Patent:
    20120316786, Dec 13, 2012
  • Filed:
    Feb 1, 2012
  • Appl. No.:
    13/364054
  • Inventors:
    Ligang Lu - New City NY, US
    Michael P. Perrone - Yorktown Heights NY, US
  • Assignee:
    INTERNATIONAL BUSINESS MACHINES CORPORATION - Armonk NY
  • International Classification:
    G06F 19/00
  • US Classification:
    702 2
  • Abstract:
    A system and method implementing a hierarchical approach to RTM (Reverse Time Migration) seismic imaging at different granularity in space and time. An RTM seismic imaging algorithm utilizes RTM technique to convert a parallel problem into one solved using massive domain partitioning. In the method, a coarse-grain grid for the 3D volume of the geological subsurface structure under investigation is initially processed, permitting the RTM imaging process to be performed faster and produces lower level seismic image for inspection. Criteria are then applied to the first level of seismic image to determine whether to reject the image or whether a finer resolution seismic imaging is needed. In the case of finer resolution is needed, RTM resolution for the target volume is adjusted accordingly and RTM imaging process is applied with the new resolution. The process is repeated until either the image is accepted or rejected.
  • Rtm Seismic Imaging Without Scratch Data Storage System And Method

    view source
  • US Patent:
    20120316792, Dec 13, 2012
  • Filed:
    Feb 1, 2012
  • Appl. No.:
    13/364025
  • Inventors:
    Ligang Lu - New City NY, US
    Michael P. Perrone - Yorktown Heights NY, US
  • Assignee:
    INTERNATIONAL BUSINESS MACHINES CORPORATION - Armonk NY
  • International Classification:
    G06F 19/00
    G01V 1/34
  • US Classification:
    702 16
  • Abstract:
    A system, method and computer program product for seismic imaging implements a seismic imaging algorithm utilizing Reverse Time Migration technique requiring large communication bandwidth and low latency to convert a parallel problem into one solved using massive domain partitioning. Several aspects of the imaging problem, including very regular and local communication patterns, balanced compute and communication requirements, scratch data handling and multiple-pass approaches. The partitioning of the velocity model into processing blocks allows each sub-problem to fit in a local cache, increasing locality and bandwidth and reducing latency.
Name / Title
Company / Classification
Phones & Addresses
Michael Perrone
Executive Officer
Exotic Performance
Legal Services
135 Linden Ave, Elmwood Park, NJ 07407
Michael Perrone
President
In Social Sign Inc
Custom Computer Programing · Custom Computer Programming Services, Nsk
26 Vly Rd, Cos Cob, CT 06807
PO Box 7793, Greenwich, CT 06836
Michael Perrone
Principal
MKMX INTERACTIVE DESIGNS, INC
Business Services
Michael Perrone 674 Wyngate Dr W, Valley Stream, NY 11580
1225 Franklin Ave / SUITE 325, Garden City, NY 11530
674 Wyngate Dr W, Valley Stream, NY 11580
Michael Perrone
Sales Staff, Vice-President, VP Sales, Vice President - Sales
Osnet Inc
Computer Hardware · Computer Systems Design · Custom Computer Programming Svcs · Computers-System Designers & C
6930 Manse St, Forest Hills, NY 11375
7185202900
Michael Perrone
MPE CONTRACTING CORP
201 Huntington Ave, Bronx, NY 10465
Penn Est BOX 458, East Stroudsburg, PA 18301
Michael Perrone
Chief Executive Officer, Principal
Mkmx Computer Solutions
Ret Computers/Software
1225 Franklin Ave, Garden City, NY 11530

Resumes

Michael Perrone Photo 1

Michael Perrone

view source
Location:
United States
Michael Perrone Photo 2

Michael Perrone

view source
Location:
Yorktown Heights, New York
Industry:
Computer Hardware
Michael Perrone Photo 3

Michael Perrone

view source
Location:
United States
Michael Perrone Photo 4

Experienced Retail Executive

view source
Position:
DSA ZEGNA SPORTSWEAR at Saks Fifth Avenue
Location:
Greater New York City Area
Industry:
Retail
Work:
Saks Fifth Avenue
DSA ZEGNA SPORTSWEAR

Hugo Boss Sep 2004 - May 2006
Regional Manager
Michael Perrone Photo 5

Customer Service Manager At Canteen Corporation

view source
Position:
Customer Service Manager at Canteen Corporation
Location:
Greater New York City Area
Industry:
Food & Beverages
Work:
Canteen Corporation
Customer Service Manager

Youtube

#1 - Intro to the Multi-Force: Mike Perrone F...

This video is from a series of Forcible Entry training tips in which M...

  • Duration:
    5m 26s

Hail & Farewell 2021 - Michael Perrone

The Steadman Clinic and Steadman Philippon Research Institute salutes ...

  • Duration:
    1m 28s

APEC 12/10, Part #5 Michael Perrone 2nd Law...

In the Dec 10th, 2022 conference session, Justin Pearson will discuss ...

  • Duration:
    1h 22m 13s

#5 - Wooden Doors and Jambs: Mike Perrone For...

This video is from a series of Forcible Entry training tips in which M...

  • Duration:
    6m 18s

#8 - Forcing Outward Opening Doors: Mike Perr...

This video is from a series of Forcible Entry training tips in which M...

  • Duration:
    2m 33s

#2 - Gapping Techniques: Mike Perrone Forcibl...

This video is from a series of Forcible Entry training tips in which M...

  • Duration:
    7m 29s

Googleplus

Michael Perrone Photo 6

Michael Perrone

Work:
Sweet Nicholas Boutique - Owner (2010)
Education:
Amherst College - Economics, St Joseph Regional H.S
Michael Perrone Photo 7

Michael Perrone

Work:
New York Life Insurance Company - Financial Analyst (4)
Education:
Manhattan College - Finance
Michael Perrone Photo 8

Michael Perrone

Education:
Brigham Young University - MBA, University of Texas at Austin - Communications
Michael Perrone Photo 9

Michael Perrone

Education:
Guyer High School
Michael Perrone Photo 10

Michael Perrone

Michael Perrone Photo 11

Michael Perrone

Michael Perrone Photo 12

Michael Perrone

Michael Perrone Photo 13

Michael Perrone

Flickr

Facebook

Michael Perrone Photo 22

Michael Perrone

view source
Michael Perrone Photo 23

Michael Perrone

view source
Michael Perrone Photo 24

Michael Perrone

view source
Michael Perrone Photo 25

Michael Perrone

view source
Michael Perrone Photo 26

Michael Perrone

view source
Michael Perrone Photo 27

Michael Perrone

view source
Michael Perrone Photo 28

Michael Perrone

view source
Michael Perrone Photo 29

Michael Perrone

view source

Myspace

Michael Perrone Photo 30

MIKE Perrone Iceman

view source
Locality:
Brooklyn, Alabama
Gender:
Male
Birthday:
1950
Michael Perrone Photo 31

Michael Perrone

view source
Locality:
252 GATES county hellllll
Gender:
Male
Michael Perrone Photo 32

Michael Perrone

view source
Locality:
NEW YORK
Gender:
Male
Birthday:
1948
Michael Perrone Photo 33

michael perrone

view source
Locality:
NEW WINDSOR, New York
Gender:
Male
Birthday:
1933
Michael Perrone Photo 34

Michael Perrone

view source
Locality:
SEATTLE, Washington
Gender:
Male
Birthday:
1916

Classmates

Michael Perrone Photo 35

Michael Perrone

view source
Schools:
Northwest-Jones Elementary School Hartford CT 1960-1964
Community:
Bob Barwald, Gary Koropatkin, Sherrie Bell, Mel Raiman
Michael Perrone Photo 36

Michael Perrone

view source
Schools:
Alfred J. Kennedy Public School 193 Whitestone NY 1996-2000
Community:
David Federbush, Andrea Naclerio, Susan Regenbogen, Carla Sue
Michael Perrone Photo 37

Michael Perrone

view source
Schools:
Old Orchard Beach High School Old Orchard Beach ME 2002-2006
Community:
Kristina Hughes
Michael Perrone Photo 38

Michael Perrone

view source
Schools:
St. Michael High School New York NY 1976-1980
Community:
Violaine Esnault, David Walsh, Tom Messner, Dorothy Jermann
Michael Perrone Photo 39

Michael Perrone

view source
Schools:
Alfred G. Berner high Massapequa Park NY 1983-1987
Community:
Patricia Curran
Michael Perrone Photo 40

Michael Perrone

view source
Schools:
The Town School New York NY 1963-1968, St. David's School New York NY 1968-1970, The Millbrook School Millbrook NY 1970-1973
Community:
David Kaufholz, Campbell White, Ted Bruner
Michael Perrone Photo 41

Michael Perrone

view source
Schools:
Freeport High School Freeport NY 1955-1959
Michael Perrone Photo 42

St. Michael High School, ...

view source
Graduates:
Michael Perrone (1976-1980),
Thomas Russell (1952-1956)

Get Report for Michael D Perrone from Chatham, NJ, age ~41
Control profile