Abstract:
The rotary dipole active magnetic regenerative refrigerator (10) of the present invention comprises a stationary first regenerative magnetic bed (12) positioned within a stationary first inner dipole magnet (14), a stationary second regenerative magnetic material bed (16) positioned within a stationary second inner dipole magnet (18), an outer dipole magnet (20) that rotates on a longitudinal axis and encloses the inner dipole magnets (14, 18), a cold heat exchanger (22), hot heat exchangers (24, 26), a fluid displacer (28), and connective plumbing through which a heat transfer fluid is conveyed. The first and second regenerative magnetic beds (12, 16) are magnetized and demagnetized as the vector sums of the magnetic fields of the inner dipoles magnets (14, 18) and the outer dipole magnet (20) are added together upon rotation of the outer dipole magnet (20), such magnetization and demagnetization causing a correlative increase and decrease in the temperature of the magnetic material beds (12, 16) by the magnetocaloric effect. Upon magnetization of any particular magnetic material bed (12 or 16), fluid flow is forced therethrough in the connective plumbing by the fluid displacer (28) in the direction from the cold heat exchanger (22) to one of the hot heat exchangers (24,26). Upon demagnetization of any particular magnetic material bed (12 or 16), fluid flow is reversed by the fluid displacer (28) and is forced in the direction from one of the hot heat exchangers (24, 26) to the cold heat exchanger (22).