An injection molding system for molding a hollow plastic article employs a hollow mold core having a longitudinal axis and a core runner cavity that has a uniform cross section throughout and which extends to the open end of the mold core. The mold core includes at least one core ejection gate and at least one core inlet gate leading from the outer surface of the core wall to the core runner cavity. When molding is performed in stages, there is it least one core ejection gate for each stage of molding. The core is clamped in between separate sets of molding blocks for each stage of molding. A core end closure cap having a core extension cavity aligned with the core runner cavity is used to close the open end of the mold core. A molten plastic is injected into the outer molding blocks and is confined to travel through the core inlet gate of the core without entering the mold cavity directly so that the molten plastic is forced to pass through the core runner cavity in order to reach the core ejection gates. Upon cooling, the core runner solidifies and is gripped and pulled longitudinally out of the core mold without leaving any residue of the plastic whatsoever.
An injection molding system for molding a hollow plastic article employs a hollow mold core having a longitudinal axis and a core runner cavity that has a uniform cross section throughout and which extends to the open end of the mold core. The mold core includes at least one core ejection gate and at least one core inlet gate leading from the outer surface of the core wall to the core runner cavity. When molding is performed in stages, there is it least one core ejection gate for each stage of molding. The core is clamped in between separate sets of molding blocks for each stage of molding. A core end closure cap having a core extension cavity aligned with the core runner cavity is used to close the open end of the mold core. A molten plastic is injected into the outer molding blocks and is confined to travel through the core inlet gate of the core without entering the mold cavity directly so that the molten plastic is forced to pass through the core runner cavity in order to reach the core ejection gates. Upon cooling, the core runner solidifies and is gripped and pulled longitudinally out of the core mold without leaving any residue of the plastic whatsoever.
Philip L. Downey - Pomona CA, US John R. Downey - Pomona CA, US Jonathan B. Downey - Pomona CA, US
International Classification:
H05B 102 B60L 102
US Classification:
219204, 219494, 219504
Abstract:
An electrically powered resistance heating handgrip includes a control circuit located within a hollow core that fits coaxially within the open end of a handlebar of a motorcycle or snowmobile. The control circuit is mounted on a thin, narrow, elongated printed circuit board and includes a microprocessor that is programmed to contain a lookup table of temperatures. A thermistor provides feedback signals to the microprocessor which compares temperature sensor feedback signals to a target temperature. The target temperature is established by a dial. The dial operates the wiper of a variable potentiometer to establish the target temperature. Heat is uniformly distributed by wrapping the heating element wire thereof about a thermally conductive sheet of aluminum, and encasing the wire within a temperature resistant dielectric sheathing.
Golf Club Grip With Embedded Display And Method Of Fabrication
An improved construction for a grip, such as a golf club grip, employs interchangeable placards that may be utilized upon identical sockets formed in a first mold. The placards are constructed with at least one, and preferably a plurality, of raised displays, such as display symbols in the form of letters, numbers, geometric designs, and other display figures. Any number of different placards may alternatively be mounted upon a socket to produce a grip according to the present invention. The socket and placard are positioned by means of positioning pegs on the underside of the mounting base of the placard. The positioning pegs are inserted into corresponding locator openings in the wall of the socket. The socket, together with the placard mounted thereon, is positioned in a second mold having a mold cavity larger than the mold cavity of the first mold in which the socket is produced. The second mold is configured so that the display face or faces of the displays projecting out from the upper surface of the placard reside in contact with the inner molding surface of the second mold.
A strap fastener for a motorcycle helmet is constructed of a unitary jacket that defines a hollow shell and latch tripping lever arms. A latching fork has a pair of resilient, generally parallel legs and can be slipped through a fabric loop which is attached to one side of the helmet. A fabric strap, secured to the other side of the helmet, is threaded through slots in a catch. The fork and catch are inserted into the jacket shell from opposite longitudinal directions. As the catch approaches the tips of the legs of the fork within the enclosure of the shell, it deflects feet defined upon the legs, overcoming the spring bias of the legs. When the catch is fully inserted, the feet of the fork legs spring back and engage hooks on the catch. The fork and the catch can be disengaged by depression of the lever arms on the jacket. The lever arms act through transverse apertures in the jacket.