The present invention relates to peptide-based nucleic acid surrogates (PNAs) having a repeating structure of (AA-aa)and a particular secondary structure that can bind to particular single-stranded nucleic acid targets. Preferably the peptide-based nucleic acid surrogate has an alpha-helical secondary structure (αPNA). Also, the present invention relates to the method of forming peptide-based nucleic acid surrogates having a particular secondary structure. The nucleic acid surrogates may be utilized for therapeutic (antisense, antigene), diagnostic (genetic), and molecular switching (αPNA chips) applications.
Improved methods of native chemical ligation are provided. The methods involve reacting a thioacid (e.g. a peptide thioacid) with an aziridinyl compound (e.g. an aziridinyl peptide) under mild conditions without the use of protecting groups, and without requiring that a cysteine residue be present in the ligation product. Initial coupling of the thioacid and the aziridinyl compound yields a ligation product which contains an aziridinyl ring. Subsequent opening of the aziridinyl ring (e.g. via a nucleophilic attack) produces a linearized and modified ligation product.
The present invention relates to the development of a new class of oligonucleotide surrogates capable of sequence specific binding to simple stranded DNA and RNA as well as to double stranded DNA targets. More specifically, structures (Ser/Thr�CH. sub. 2 B!-AA). sub. n represent the repeating structural units for a number of the nucleic acid surrogates of the present invention. Once synthesized (in suitably protected form), the monobasic units are linked together via peptide bonds to produce the required oligomeric structures having defined nucleobase sequences. These nucleic acid surrogates may then be utilized for use as antisense/antigene probes and/or drug carriers.
Novel methods of native chemical ligation are provided. The methods involve reacting a thioacid (e.g. a peptide thioacid) with an aziridinyl compound (e.g. an aziridinyl peptide) or glycosylamine under mild conditions without the use of protecting groups, and without requiring that a cysteine residue be present in the ligation product. Initial coupling of the thioacid and the aziridinyl compound yields a ligation product containing an aziridinyl ring. Optional subsequent opening of the aziridinyl ring (e.g. via a nucleophilic attack) produces a linearized and modified ligation product. Coupling of a peptide thioacid and glycosylamine yields a glycosylated peptide.
Cynthia is my wonderful wife. We live in Atlanta, Georgia. I am an advertising sales and marketing professional. I earned a Bachelors of Business Administration degree at Georgia College & State U...