Pierre L. Bastien - Castle Rock CO Stephen L. Bulick - Boudler CO Xiaojiang Lu - Broomfield CO Victoria L. C. Okeson - Arvada CO Steve E. Showell - Parker CO
Assignee:
Qwest Communications International Inc. - Denver CO
Planning alternative SS7 networks is a complex task requiring assistance from an intelligent planning tool. The tool provides a method for forecasting service loads including automatically obtaining network traffic information from the network. Service loads are estimated based on a first set of network traffic information and service descriptions. Correction factors are calculated for service loads based on a second set of network traffic information. The correction factors are applied to estimated service loads to determine peak loads for each STP in the core network based on network traffic, component locations, and component connectivity.
Method For Optimally Selecting Nodes For Removal From A Hierarchical Communication Network
Local signal transfer points (LSTPs) are optimally selected for removal from a Signaling System Number 7 (SS7) network. At least one network element is connected to each LSTP and each LSTP is connected to a parent node. Each LSTP is determined as a flexible LSTP or a fixed LSTP. A potential network configuration is formed with at least one flexible LSTP excluded. Each network element is reconnected to one LSTP in the potential network configuration and each LSTP in the potential network configuration is reconnected to one parent node. A total cost based on the potential network configuration is determined. The potential network configuration becomes the new best network configuration if the total cost is less than any previous total cost. The process is repeated for each potential network configuration resulting from removing a different combination of flexible LSTPs.
Stephen L. Bulick - Boulder CO Victoria L. C. Okeson - Arvada CO Pierre L. Bastien - Castle Rock CO Xiaojiang Lu - Broomfield CO Steve E. Showell - Parker CO
Assignee:
Qwest Communications International Inc. - Denver CO
International Classification:
H04L 1228
US Classification:
370254, 370385, 370386, 370400, 37922105
Abstract:
Planning alternative SS7 networks is a complex task requiring assistance from an intelligent planning tool. The tool includes at least one planning database containing information on network traffic, component locations, and component connectivity. A load module determines peak load for each STP in the core network. A forecast module determines equipment capacity exhaustion for each STP, network database, and core link during each study period and determines network costs based on peak loads and an alternative network design provided by a user. A graphical user interface guides the user through a sequence of design steps, each step having to be correctly completed before the next step in the sequence is started. The sequence of steps may include permitting changes to the core network, permitting changes to the number of POPs and DBs, rehoming elements left disconnected from STPs, assigning SSPs to POPs, assigning SSPs to DBs, and permitting voluntary rehomes.
Stephen L. Bulick - Boulder CO, US Victoria L. C. Okeson - Arvada CO, US Pierre L. Bastien - Castle Rock CO, US Xiaojiang Lu - Broomfield CO, US Steve E. Showell - Parker CO, US
Assignee:
Qwest Communications International Inc. - Denver CO
Planning alternative SS7 networks is a complex task requiring assistance from an intelligent planning tool. The tool includes at least one planning database containing information on network traffic, component locations, and component connectivity. A load module determines peak load for each STP in the core network. A forecast module determines equipment capacity exhaustion for each STP, network database, and core link during each study period and determines network costs based on peak loads and an alternative network design provided by a user. A graphical user interface guides the user through a sequence of design steps, each step having to be correctly completed before the next step in the sequence is started. The sequence of steps may include permitting changes to the core network, permitting changes to the number of POPs and DBs, rehoming elements left disconnected from STPs, assigning SSPs to POPs, assigning SSPs to DBs, and permitting voluntary rehomes.