Richard Albert - Santa Rosa CA Arne Erstling - Santa Rosa CA Desmond L. Seekola - Santa Rosa CA Brent Bergner - Charlotte NC Michael Knotz - Sebastopol CA
Assignee:
Spectraswitch, Inc. - Santa Rosa CA
International Classification:
G02F 107
US Classification:
359256, 385 16, 349117, 349119, 359301
Abstract:
A polarization independent optical device is provided wherein the device has two optical paths that include one or more birefringent crystals, a electrically controllable rotator, and a fixed waveplate. The device may operate as a switch, attenuator, coupler, or polarization mode dispersion compensator. The device may also include several folded path embodiments, a multifunctional embodiment, and a temperature insensitive embodiment.
A laminography apparatus utilizing at least a pair of detectors spaced from a source of X-rays. The X-rays emanate from a tube window and create images in the detectors. Optical gradients are removed from the images obtained by the detectors through a first computer program. The position of each of the detectors relative to the source of X-rays is also determined by a mask which permits a second computer program to process position information. In addition, the brightness of the images obtained by the detectors is adjusted using a third computer program based on any one of a number of detectors providing a brightness standard.
Method And Apparatus For Digital Control Of Scanning X-Ray Imaging Systems
X-ray images are produced on a monitor display screen by situating the subject between a detector having a minute x-ray sensitive area and an x-ray source having an extensive anode plate on which an x-ray origin point is swept in a raster pattern similar to the raster of the display monitor. Operating parameters of the x-ray source are controlled by digital data processing circuits which enable magnification of operator selected areas of the image by reducing the size of x-ray source raster pattern and repositioning of the raster pattern on the anode plate in response to operator actuation of one or more computer input devices. In the preferred form, the system also enables image enhancements and control of image characteristics such as contrast and brightness in response to actuations of the input devices or in response to programming. X-ray exposure and image acquisition time may be reduced by operator selection of only specific areas of particular interest for high resolution scanning. In the preferred form, the apparatus can detect a particular gray level in the image data and relocate the scan to image the region where the gray level is found.
Method And Apparatus Producing Plural Images Of Different Contrast Range By X-Ray Scanning
A plurality of radiographic images of a subject are obtained simultaneously by situating the subject between a scanning X-ray source and an X-ray detector. The source has an electron beam which is swept through a raster pattern on a broad target to produce a moving X-ray origin point while the detector has an effective radiation-sensitive area which is very small in relation to the raster pattern. The X-axis and Y-axis beam deflection signals which control the X-ray source are also transmitted to both sets of raster signal terminals of a dual-image oscilloscope of the form having two deflectable electron beams for producing two separate images at a display screen. Both intensity signal terminals of the oscilloscope receive processed X-ray count signals from the detector through separate signal channels so that a pair of radiographic images of the scanned region of the subject are generated at the display screen. Separate signal processing circuits in each channel may be adjusted to have different gain factors and to establish different base levels and peak levels for the intensity signals enabling each radiographic image to emphasize a different aspect of the scanned region of the subject as each image may have a different contrast range. The plural images taken in conjunction exhibit contrast ranges which may exceed the contrast limitations of a single oscilloscope image or the similar limitations of photographic film which may be used to record the oscilloscope display.
Richard Albert - Santa Rosa CA Anthony P. Baker - Santa Rosa CA
Assignee:
SpectraSwitch, Inc. - Santa Rosa CA
International Classification:
G02F 113 G02F 11347 H04J 1408
US Classification:
349196
Abstract:
The present invention provides for a polarization independent optical switch for selectively switching an optical signal from at least one input port to a preselected one of a plurality of different output ports. The optical switch operates to transmit all of the optical signal from an input port to a predetermined one of the output ports without first segmenting the optical signal into two polarizations.
Radiographic images of high definition and clarity are produced quickly and with reduced radiation exposure of the subject by utilizing a scanning X-ray source in which a moving point source of X-rays is created by sweeping an electron beam in a raster pattern on a broad anode. A radiation detector having a very small radiation sensitive area is situated on the opposite side of the subject from the source. The output of the detector controls electron beam intensity within a cathode ray type display tube wherein the raster pattern is synchronized with that of the X-ray source to produce an image of internal structure of the subject. In some embodiments of the invention, the small radiation detector is mounted on a probe suitable for insertion into internal regions of a living body or into recesses in mechanical structure to be examined. Stereo images may be produced by employing two spaced apart detectors controlling two separate images which are directed to separate eyes of the observer or by using a single detector alternately controlling each of the two images while the raster pattern at the source is alternately shifted between two at least partially separate areas of the anode. As the detector output is an electronic signal, the image data may be stored on magnetic tape or the like and may also be readily processed by electronic techniques for such purposes as image enhancement, and addition, subtraction or superimposition of images.
Method Of Manufacture Of Laminate Radiation Collimator
A collimator (21, 38, 38A) transmits intercepted X rays or the like along an array of predetermined spaced apart paths (22, 22A), which may be parallel or convergent, while absorbing intercepted radiation which is traveling in other directions. A laminated construction of the collimator provides for an extremely large number of very minute and closely spaced radiation passages (42, 42A) which may have a noncircular cross section to increase transmissivity. The laminated construction also reduces the amount of heavy and sometimes costly radiation absorbent material required in the collimator, enables precise control of the transmitted radiation paths and facilitates the establishing of a desired focal point for the paths. Photoetching techniques, including optical image reduction, are used in the manufacture of the collimator laminations. In some variations of the method, the radiation absorbent material is plated onto the laminations.
Cross-sectional or oblique sectional tomographic X-ray images of a subject are obtained more quickly, easily and economically and with less cumbersome apparatus by utilizing an X-ray source in which a moving point source of X-rays is produced by sweeping an electron beam across a broad anode plate. One or more relatively small X-ray detectors are situated on the opposite side of the subject to produce X-ray counts in the course of the scanning action, the counts being indicative of variations of X-ray transmissiveness within a plane extending crosswise or obliquely through the subject. By repetitively shifting the angular relationship of the subject relative to the X-ray source and detector structure and repeating the scanning process between each such angular movement, data is obtained which is used to generate a visible cross-sectional image of the subject. By repeating the scanning process in a series of adjacent planes, data for generating a three-dimensional X-ray image of the subject may also be obtained. Processing of the X-ray detector output signals and scan position data to produce the desired images may be done using digital computer techniques or by analog apparatus.
Isbn (Books And Publications)
Damming the Delaware: The Rise and Fall of Tocks Island Dam