John Burey - Sheboygan WI, US Mark Huibregtse - Cleveland WI, US Ronald V. Post - Manitowoc WI, US Benji J. Bink - St. Cloud WI, US Daniel J. Luhman - Kohler WI, US Richard J. Fotsch - Sheboygan Falls WI, US
Gary J. Gracyalny - Milwaukee WI Richard J. Fotsch - Elm Grove WI David Procknow - Elm Grove WI Art Poehlman - West Bend WI Scott A. Funke - New Berlin WI
Assignee:
Briggs Stratton Corporation - Milwaukee WI
International Classification:
F01L 118
US Classification:
123 9039, 123 9016, 123 9017
Abstract:
An overhead valve engine including a cylinder bore having an outer end; and a crankshaft assembly including a substantially straight crankshaft, a substantially cylindrical journal eccentrically mounted on the crankshaft, a one-piece connecting rod rotatably mounted on the journal, and a counterweight mounted on the crankshaft. The engine also includes a cam shaft having at least one cam surface and an axis inward of the outer end of the cylinder bore; two valves having opened and closed positions; two valve stems, each valve stem being attached to a valve; and two generally L-shaped and pivotably mounted valve operating levers, each lever including a first lever arm having a cam follower in contact with the cam surface, a pivot axis about which the lever pivots, and a valve arm in contact with a valve stem, where movement of the lever caused by the cam surface causes the lever to pivot and the valve arm to depress the valve stem and thus open the valve.
Cross-port air flow that improves engine fuel economy and reduces pumping losses during part-throttle operation can be implemented in various types of internal combustion engine systems using ports that interconnect the intake ports of different cylinders, thus allowing different cylinders to share combustion air. Cross-port air flow is commenced during part-throttle engine operation to disrupt the primary combustion air flow from each throttle to its associated cylinder, which reduces charge density and engine power. The engine compensates for the reduced power by incrementally opening the throttles, thus increasing the primary combustion air flow, reducing pumping losses and improving fuel economy.
Cross-port air flow that improves engine fuel economy and reduces pumping losses during part-throttle operation can be implemented in various types of internal combustion engine systems using ports that interconnect the intake ports of different cylinders, thus allowing different cylinders to share combustion air. Cross-port air flow is commenced during part-throttle engine operation to disrupt the primary combustion air flow from each throttle to its associated cylinder, which reduces charge density and engine power. The engine compensates for the reduced power by incrementally opening the throttles, thus increasing the primary combustion air flow, reducing pumping losses and improving fuel economy.
Synergistic Induction And Turbocharging In Internal Combustion Engine Systems
Synergistic induction and turbocharging includes the use of one or more throttles in close proximity to each cylinder intake valve to control air flow in each intake port delivering air to combustion cylinders in an internal combustion engine system. A turbocharger may also be affixed in close proximity to each cylinder exhaust valve to enable a synergistic combination of hyper-filling cylinders with combustion air and immediate harvesting of exhaust gas by adjacent turbochargers. In some implementations the turbochargers may be low-inertia turbochargers. The combination of individual throttles per intake port and a turbocharger in close proximity to each cylinder enables faster ramp-up of an engine in the early stages of acceleration. Various implementations thus provide improved fuel economy and improved engine performance in tandem, instead of one at the expense of the other.
Cross-port air flow that improves engine fuel economy and reduces pumping losses during part-throttle operation can be implemented in various types of internal combustion engine systems using ports that interconnect the intake ports of different cylinders, thus allowing different cylinders to share combustion air. Cross-port air flow is commenced during part-throttle engine operation to disrupt the primary combustion air flow from each throttle to its associated cylinder, which reduces charge density and engine power. The engine compensates for the reduced power by incrementally opening the throttles, thus increasing the primary combustion air flow, reducing pumping losses and improving fuel economy.
Synergistic Induction And Turbocharging In Internal Combustion Engine Systems
- Sheboygan Falls WI, US Richard J. Fotsch - Sheboygan Falls WI, US C. Thomas Sylke - Whitefish Bay WI, US
International Classification:
F02B 37/007 F02D 9/10 F02D 41/00 F02B 37/00
Abstract:
Synergistic induction and turbocharging includes the use of one or more throttles in close proximity to each cylinder intake valve to control air flow in each intake port delivering air to combustion cylinders in an internal combustion engine system. A turbocharger may also be affixed in close proximity to each cylinder exhaust valve to enable a synergistic combination of hyper-filling cylinders with combustion air and immediate harvesting of exhaust gas by adjacent turbochargers. In some implementations the turbochargers may be low-inertia turbochargers. The combination of individual throttles per intake port and a turbocharger in close proximity to each cylinder enables faster ramp-up of an engine in the early stages of acceleration. Various implementations thus provide improved fuel economy and improved engine performance in tandem, instead of one at the expense of the other.
Synergistic Induction And Turbocharging In Internal Combustion Engine Systems
Synergistic induction and turbocharging includes the use of one or more throttles in close proximity to each cylinder intake valve to control air flow in each intake port delivering air to combustion cylinders in an internal combustion engine system. A turbocharger may also be affixed in close proximity to each cylinder exhaust valve to enable a synergistic combination of hyper-filling cylinders with combustion air and immediate harvesting of exhaust gas by adjacent turbochargers. In some implementations the turbochargers may be low-inertia turbochargers. The combination of individual throttles per intake port and a turbocharger in close proximity to each cylinder enables faster ramp-up of an engine in the early stages of acceleration. Various implementations thus provide improved fuel economy and improved engine performance in tandem, instead of one at the expense of the other.
Youtube
Fotsch's elbow infection
Duration:
2m 15s
Fotsch & McClain
Fotsch & McClain.
Duration:
3m 14s
CrossFit Open 22.3
Thanks for checking out the channel!
Duration:
9m 17s
Fotsch Wax 2009
Fotsch gets his chest waxed...he no longer has nipple hair too...which...
Duration:
1m 24s
Bill Fotsch - Principi finannega opismenjevan...
V svojem predavanju se Bill Fotsch posveti principu odprtih knjig ozir...