Grinding control methods and apparatus pertaining generally to maintaining the shape and sharpness of a grinding wheel, despite the tendency of the wheel face to deteriorate from the desired shape and sharpness, as grinding of a given workpiece or a succession of workpieces proceeds. Generally, as a common denominator of the novel features disclosed, a "conditioning element" is brought into rubbing contact with the face of the grinding element under specially controlled and unique conditions to (i) restore the desired shape (conventionally called truing), or (ii) to establish the desired degree of sharpness (conventionally called "dressing") or to accomplish both (i) and (ii) simultaneously. The methods and apparatus disclosed include creating the aforesaid controlled rubbing contact either while the grinding wheel is free of grinding contact with a workpiece or simultaneously while grinding is occurring, and then either continuously or intermittently. The methods and apparatus in many of their various embodiments involve use of a "truing element" or a "conditioning element" which may be a generally homogeneous metal, and in many cases the same metal as that of the workpieces being ground.
A centerless grinding system comprises a driven grinding wheel, a driven regulating wheel, and a work rest blade for centerless grinding of a workpiece supported by the work rest blade between the grinding wheel and the regulating wheel; means for determining the rate of reduction of the workpiece radius while it is being ground; and means responsive to the rate of reduction of the workpiece radius for controlling the ratio of the power consumed in removing workpiece material to the rate of removal of workpiece material by the grinding wheel. The regulating wheel is preferably fed toward the grinding wheel to feed the workpiece into the grinding wheel. In a similar center-type grinding system, the workpiece is mounted on spindles or chucks which are movable toward the grinding wheel so that the workpiece can still be fed by the regulating wheel. Workpieces longer than the axial dimension of the grinding wheel are ground in successive plunges along the length of the workpiece, with said ratio being controlled in each successive plunge. To grind hollow workpieces, the regulating wheel or grinding wheel is placed inside the hollow workpiece.
This invention is a new high wheel speed grinding process that uses only one very hard grade resin bonded grinding wheel of the desired abrasive grit size for the surface finish required, where simultaneously with the grinding of a workpiece the wheel face is conditioned and trued by a truing element heated to a temperature between 250. degree. F. and 1200. degree. F. at the truing rates required to provide grinding at quantitatively predictable desired and constant unit volume energy and metal removal rate values. Because of the hard grade wheel specification, the wheel face would quickly revert under any job situation to a dull wheel face without this conditioning and truing. Under any forseeable job situation, conjoint control of the temperature of the truing element and the truing rate controls wheel wear rate. With wheel wear rate controlled, continuous compensation for wheel wear is made and results in a grinding process where metal removal rate is equal to the relative volumetric feed rate of the workpiece and the wheel. The metal removal is shared uniformly across the entire wheel cutting face regardless of plunge or transverse grind configuration because of the orientation of the truing element relative to the direction of the volumetric feed.
A grinding system is controlled by (1) determining the exact nature of a power function relationship between (a) the rate at which material is removed from one of the surfaces at a rubbing interface and (b) the feed rate at which the rubbing surfaces are fed into each other, for a particular grinding operation, i. e. , a particular grinding wheel and other specified conditions affecting the rate of material removal at the rubbing interface; and (2) controlling, measuring or setting the material removal rate or the feed rate in such a grinding operation in accordance with said power function relationship.
A method of grinding a workpiece which is susceptible to deflection and/or deformation when grinding is carried out by relatively infeeding a grinding wheel to keep the wheel face and work surface in relative rubbing contact at an interface region, the method comprising continuously determining the force exerted by the wheel on the workpiece at the interface region as grinding conditions change, continuously applying to the workpiece at least one counterbalance force which in equivalent effect is opposite in sense to the determined force, and variably controlling the counterbalancing force to maintain its effective magnitude equal to the magnitude of the determined force.
A centerless grinding system comprises a driven grinding wheel, a driven regulating wheel, and a work rest blade for centerless grinding of a workpiece supported by the work rest blade between the grinding wheel and the regulating wheel; means for determining the rate of reduction of the workpiece radius while it is being ground; and means responsive to the rate of reduction of the workpiece radius for controlling the ratio of the power consumed in removing workpiece material to the rate of removal of workpiece material by the grinding wheel. The regulating wheel is preferably fed toward the grinding wheel to feed the workpiece into the grinding wheel. In a similar center-type grinding system, the workpiece is mounted on spindles or chucks which are movable toward the grinding wheel so that the workpiece can still be fed by the regulating wheel. Workpieces longer than the axial dimension of the grinding wheel are ground in successive plunges along the length of the workpiece, with said ratio being controlled in each successive plunge. To grind hollow workpieces, the regulating wheel or grinding wheel is placed inside the hollow workpiece.
This invention is a new high wheel speed grinding process that uses only one very hard grade resin bonded grinding wheel of the desired abrasive grit size for the surface finish required, where simultaneously with the grinding of a workpiece the wheel face is conditioned and trued by a truing element heated to a temperature between 250. degree. F. and 1200. degree. F. at the truing rates required to provide grinding at quantitatively predictable desired and constant unit volume energy and metal removal rate values.
Method And Apparatus For Wheel Conditioning In A Grinding Machine
Grinding control methods and apparatus pertaining generally to maintaining the shape and sharpness of a grinding wheel, despite the tendency of the wheel face to deteriorate from the desired shape and sharpness, as grinding of a given workpiece or a succession of workpieces proceeds. Generally, as a common denominator of the novel features disclosed, a "conditioning element" is brought into rubbing contact with the face of the grinding element under specially controlled and unique conditions to (i) restore the desired shape (conventionally called truing), or (ii) to establish the desired degree of sharpness (conventionally called "dressing"), or to accomplish both (i) and (ii) simultaneously. The methods and apparatus disclosed include creating the aforesaid controlled rubbing contact either while the grinding wheel is free of grinding contact with a workpiece or simultaneously while grinding is occuring, and then either continuously or intermittently. The methods and apparatus in many of their various embodiments involve use of a "truing element" or a "conditioning element" which may be a generally homogeneous metal, and in many cases the same metal as that of the workpieces being ground.
Dr. Smith graduated from the University of Iowa Carver College of Medicine in 1988. He works in Flint, MI and 1 other location and specializes in Child & Adolescent Psychiatry. Dr. Smith is affiliated with Hurley Medical Center, Mclaren Bay Region and Saint Marys Of Michigan Standish Hospital.
"We were somewhat handcuffed by the financials on the project," said Roderick Smith, executive vice president of production finance at Paramount Pictures. "We would not have done the show here in California without the credit."
A 17-year-old student from West Orange High School was taken into custody while a 15-year-old had injuries to his face and stomach, police and school officials said. The younger teen, Ja'Roderick Smith, was alert when he was taken to a hospital, where he was in stable condition.
"I thought it was inspiring and really eye-opening," said Roderick Smith, a senior public relations student at Florida A&M University. "I like how they went in-depth with the journals and how they showed diversity young and old and not just whites and blacks. It shows that it literally could h