Peter P. Soltesz - Henderson NV, US Anthony D. Wondka - Thousand Oaks CA, US Rodney A. Perkins - Woodside CA, US Robert Kotmel - Burlingame CA, US
Assignee:
Pulmonx Corporation - Redwood City CA
International Classification:
A61M 31/00
US Classification:
604516
Abstract:
Lung volume reduction is performed in a minimally invasive manner by isolating a lung tissue segment, optionally reducing gas flow obstructions within the segment, and aspirating the segment to cause the segment to at least partially collapse. Further optionally, external pressure may be applied on the segment to assist in complete collapse. Reduction of gas flow obstructions may be achieved in a variety of ways, including over inflation of the lung, introduction of mucolytic or dilation agents, application of vibrational energy, induction of absorption atelectasis, or the like. Optionally, diagnostic procedures on the isolated lung segment may be performed, typically using the same isolation/access catheter.
The present invention provides systems, methods, devices and kits for assessing the level of pulmonary disease in individual lung compartments. A lung compartment comprises a subportion of a lung, such as a lobe, a segment or a subsegment, for example. By measuring individual lung compartments, the level of disease of the pulmonary system may be more precisely defined by determining values of disease parameters reflective of individual subportions or compartments of a lung. Likewise, compartments may be separately imaged to provide further measurement information. Once individual compartments are characterized, they may be compared and ranked based on a number of variables reflecting, for example, level of disease or need for treatment. Such comparison may be aided by simultaneous display of such variables or images on a visual display. Further, the same tests may be performed on the lung as a whole or on both lungs and to determine the affect of the diseased lung compartments on the overall lung performance. In addition, the diseased lung compartments may be temporarily isolated and the measurement tests performed to determine the affect of the isolation on overall lung performance. As a result, the most beneficial treatment options may be selected.
The present invention provides systems, methods, devices and kits for assessing the level of pulmonary disease in individual lung compartments. A lung compartment comprises a subportion of a lung, such as a lobe, a segment or a subsegment, for example. By measuring individual lung compartments, the level of disease of the pulmonary system may be more precisely defined by determining values of disease parameters reflective of individual subportions or compartments of a lung. Likewise, compartments may be separately imaged to provide further measurement information. Once individual compartments are characterized, they may be compared and ranked based on a number of variables reflecting, for example, level of disease or need for treatment. Such comparison may be aided by simultaneous display of such variables or images on a visual display. Further, the same tests may be performed on the lung as a whole or on both lungs and to determine the affect of the diseased lung compartments on the overall lung performance. In addition, the diseased lung compartments may be temporarily isolated and the measurement tests performed to determine the affect of the isolation on overall lung performance. As a result, the most beneficial treatment options may be selected.
The present invention provides systems, methods, devices and kits for assessing the level of pulmonary disease in individual lung compartments. A lung compartment comprises a subportion of a lung, such as a lobe, a segment or a subsegment, for example. By measuring individual lung compartments, the level of disease of the pulmonary system may be more precisely defined by determining values of disease parameters reflective of individual subportions or compartments of a lung. Likewise, compartments may be separately imaged to provide further measurement information. Once individual compartments are characterized, they may be compared and ranked based on a number of variables reflecting, for example, level of disease or need for treatment. Such comparison may be aided by simultaneous display of such variables or images on a visual display. Further, the same tests may be performed on the lung as a whole or on both lungs and to determine the affect of the diseased lung compartments on the overall lung performance. In addition, the diseased lung compartments may be temporarily isolated and the measurement tests performed to determine the affect of the isolation on overall lung performance. As a result, the most beneficial treatment options may be selected.
Soundhawk is the brain child of Rodney Perkins, founder of both Stanford University's California Ear Institute and the world's fourth largest maker of hearing aids, GN ReSound. Perkins, a serial entrepreneur in the health space, has pushed the technical boundaries of hearing aids with ReSound produc
Date: Jun 24, 2014
Source: Google
Soundhawk Unveils the World's First Smart Listening System
Founded by one of the world's leading hearingexperts, Dr. Rodney Perkins (California Ear Institute, ReSound,EarLens), and built by former executives and engineers from Apple,HP, Amazon and Palm, Soundhawk is backed by True Ventures, FIH MobileLimited and many leading entrepreneurs. To learn mor