A cardiac pacing system that includes an implantable pulse generator and electrical leads that include a lead body portion having a distal end and a proximal end, a connector configured to electrically connect the proximal end of the lead body to the pulse generator, and at least one electrode disposed at the distal end of the lead body for delivering electrical stimulation to a patient's heart, wherein the distal end of the lead body is configured to terminate within the mediastinum of the thoracic cavity of the patient, proximate to the heart.
A cardiac pacing system that includes an implantable pulse generator and electrical leads that include a lead body portion having a distal end and a proximal end, a connector configured to electrically connect the proximal end of the lead body to the pulse generator, and at least one electrode disposed at the distal end of the lead body for delivering electrical stimulation to a patient's heart, wherein the distal end of the lead body is configured to terminate within the mediastinum of the thoracic cavity of the patient, proximate to the heart.
A cardiac pacing system that includes an implantable pulse generator and electrical leads that include a lead body portion having a distal end and a proximal end, a connector configured to electrically connect the proximal end of the lead body to the pulse generator, and at least one electrode disposed at the distal end of the lead body for delivering electrical stimulation to a patient's heart, wherein the distal end of the lead body is configured to terminate within the mediastinum of the thoracic cavity of the patient, proximate to the heart.
Systems, methods and devices for delivering stimulating energy with a lead are disclosed. One method includes inserting a lead for cardiac therapy into an intercostal space of a patient and proximate to a lateral margin of the patient's sternum (the lead having a distal end configured to transmit therapeutic electrical pulses from a pulse generator to the heart), advancing the distal end of the lead through the intercostal space, and coupling a proximal end of the lead to the pulse generator for delivery of therapeutic electrical pulses for pacing or defibrillation of the heart.
- San Clemente CA, US Alan Marcovecchio - San Clemente CA, US Sean P. McGeehan - Encinitas CA, US
Assignee:
AtaCor Medical, Inc. - San Clemente CA
International Classification:
A61N 1/365 A61N 1/362 A61N 1/05 A61N 1/39
Abstract:
A cardiac defibrillation system that includes a pulse generator to generate therapeutic electrical pulses and at least one lead inserted through an intercostal space in the region of a cardiac notch of the left lung of a patient, the lead having a distal end configured to transmit the therapeutic electrical pulses generated by the pulse generator to defibrillate the heart of the patient.
- San Clemente CA, US Alan Marcovecchio - San Clemente CA, US Sean P. McGeehan - Rancho Santa Fe CA, US
Assignee:
AtaCor Medical, Inc. - San Clemente CA
International Classification:
A61N 1/365 A61N 1/05 A61N 1/362 A61N 1/375
Abstract:
A cardiac pacing system having a pulse generator for generating therapeutic electric pulses, a lead electrically coupled with the pulse generator having an electrode, a first sensor configured to monitor a physiological characteristic of a patient, a second sensor configured to monitor a second physiological characteristic of a patient and a controller. The controller can determine a pacing vector based on variables including a signal received from the second sensor, and cause the pulse generator to deliver the therapeutic electrical pulses according to the determined pacing vector. The controller can also modify pacing characteristics based on variables including a signal received from the second sensor.
- San Clemente CA, US Alan Marcovecchio - San Clemente CA, US Sean P. McGeehan - Rancho Santa Fe CA, US
Assignee:
AtaCor Medical, Inc. - San Clemente CA
International Classification:
A61N 1/365 A61N 1/05 A61N 1/362 A61N 1/375
Abstract:
A cardiac pacing system having a pulse generator for generating therapeutic electric pulses, a lead electrically coupled with the pulse generator having an electrode, a first sensor configured to monitor a physiological characteristic of a patient, a second sensor configured to monitor a second physiological characteristic of a patient and a controller. The controller can determine a pacing vector based on variables including a signal received from the second sensor, and cause the pulse generator to deliver the therapeutic electrical pulses according to the determined pacing vector. The controller can also modify pacing characteristics based on variables including a signal received from the second sensor.
- San Clemente CA, US Alan Marcovecchio - San Clemente CA, US Sean P. McGeehan - Rancho Santa Fe CA, US
Assignee:
AtaCor Medical, Inc. - San Clemente CA
International Classification:
A61N 1/365 A61N 1/05 A61N 1/362 A61N 1/375
Abstract:
A cardiac pacing system having a pulse generator for generating therapeutic electric pulses, a lead electrically coupled with the pulse generator having an electrode, a first sensor configured to monitor a physiological characteristic of a patient, a second sensor configured to monitor a second physiological characteristic of a patient and a controller. The controller can determine a pacing vector based on variables including a signal received from the second sensor, and cause the pulse generator to deliver the therapeutic electrical pulses according to the determined pacing vector. The controller can also modify pacing characteristics based on variables including a signal received from the second sensor.