A retractable optical fiber assembly includes a housing, a spool rotatably disposed within the housing and an optical waveguide reeled onto the spool. The optical waveguide has a central length of unjacketed optical fiber and shorter end lengths of jacketed optical fiber terminating in optical connectors. The optical waveguide is reeled onto the spool such that the end lengths of jacketed optical fiber are extracted off the spool and retracted onto the spool in the same direction. The spool is biased in a first rotational direction relative to the housing by a torsion spring that exerts a retracting force on the jacketed optical fiber. A mechanical stop is also provided to prevent rotation of the spool in a second rotational direction opposite the first rotational direction. In an exemplary embodiment, the assembly is a test fiber box for use with optical test equipment to test an optical network.
A retractable optical fiber assembly includes a housing, a spool rotatably disposed within the housing and an optical waveguide reeled onto the spool. The optical waveguide has a central length of unjacketed optical fiber and shorter end lengths of jacketed optical fiber terminating in optical connectors. The optical waveguide is reeled onto the spool such that the end lengths of jacketed optical fiber are extracted off the spool and retracted onto the spool in the same direction. The spool is biased in a first rotational direction relative to the housing by a torsion spring that exerts a retracting force on the jacketed optical fiber. A mechanical stop is also provided to prevent rotation of the spool in a second rotational direction opposite the first rotational direction. In an exemplary embodiment, the assembly is a test fiber box for use with optical test equipment to test an optical network.
Sean M. Pons - Valdese NC, US John M. Ferrell - Hickory NC, US Eric M. Price - Hickory NC, US Matthew T. Burkett - Hickory NC, US
Assignee:
LASTAR, INC. - Moraine OH
International Classification:
H05K 13/04
US Classification:
29729
Abstract:
An automated fiber optic connector processing system for processing a plurality of fiber optic cables and connectors, with each of said cables including an optical fiber, includes a pallet fixture for holding a plurality of fiber optic cables and connectors during movement along a manufacturing line so that the connectors may be secured to the cable ends, and the ends of the cables finished. The pallet fixture includes a pallet base plate, with a stationary fixture mounted along one edge of the pallet base plate. The stationary fixture defines a plurality of channels for receiving fiber optic cable connectors of the plurality of fiber optic cables, and at least one latching plate for retaining the connectors in the plurality of channels. An oven having an elongated oven opening is provided at a first processing station. A robotic processor for cutting the optical fibers of the fiber optic cables, buffing the ends of the optical fibers, and polishing the ends of the optical fibers, is provided at a second station. A conveyor moves the pallet fixture to the first processing station for heat treating the connectors, curing the epoxy that retains the connectors on the ends of the cables, and moves the pallet fixture to the second processing station for cutting and polishing the optical fibers.