Apparatus and methods are provided for extracting compounds from raw materials. One such apparatus may include an extraction column where it is a one column, one pass design capable of withstanding high temperatures and pressure. Additionally, the extraction column may also be capable of containing a self-perpetuating energy cycle used to achieve the required solubilization and mass transfer temperatures necessary for optimal extraction. The apparatus may also include a first opening and a second opening to control the flow of incoming solvent and filter extraneous sediment trapped within the fully extracted effluent. Additionally, the apparatus may be configured to create a self-perpetuating and self-sustaining energy cycle by manipulating the pressure and temperature generated within the apparatus. While the generated temperatures may help achieve a dynamic and efficient extraction process, a trailing cool layer of solvent is also present to effectively preserve the heat sensitive compounds extracted from the raw materials.
Pressure Gradient Profiling In An Extraction Column
A method and apparatus for extracting compounds from raw materials with an extraction column is provided. The control and manipulation of pressure exerted and contained within the extraction vessel or column may be vital in obtaining a certain flavor profile or intensity of the effluent extracted from the raw materials. As such, the method may include directing a flow of pressurized solvent into a base of the extraction column and utilizing the flow of pressurized solvent to create a pressure gradient applied to the raw materials. The method may further include compressing the raw materials with hydraulic compression. As the raw materials become further compressed, frictional heating may result allowing most, if not all, of the volatile aromatic heat sensitive compounds and constituencies to be extracted depending on the pressure strength applied to the raw materials. As such, manipulating the pressure gradients for each extraction process allows for distinct and specific flavor profiles to be extracted from the raw materials.
Poly-Grain Grind Matrix Of Raw Materials For Use With An Extraction Column
Embodiments of the present disclosure include a matrix of raw materials that form an interlocking network of varied particle grind sizes that allows the particles to nest and interlock with one another when packed into an extraction vessel, so that most, but not all of the interstitial spacing within the matrix of raw materials is closed. The varied particle sizes may be selected by pre-determined weight ranges and size classifications so that the particle grind sizes achieve the desired consistency uniformity. This may allow the network of particles to act as its own best filtering agent during the extraction process. Moreover, the nesting and interlocking network of the particles within the matrix of raw materials may allow the particles to be effectively packed within the extraction column, thus allowing for an efficient and high quality extraction to be performed consistently each and every time.
Heat Modulation Control Within An Extraction Column
An apparatus and method are provided for extraction compounds from raw materials. The control and manipulation of heat formed and contained within the extraction vessel or column may be vital in obtaining a certain flavor profile or intensity of the effluent extracted from the raw materials. As such, the solvent entering the apparatus to extract the raw materials may be heated to a specified temperature range with the aid of energy already formed within the extraction column. The apparatus to extract the raw materials may include a body comprising a pressure vessel capable of withstanding high temperatures and pressures. Additionally, a flow of pressurized solvent may enter the base of the extraction column, where the flow of pressurized solvent has a select temperature such that the temperature may be manipulated to obtain a distinct flavor profile of the effluent extracted from the raw materials.
A system and method are provided for extracting compounds from raw materials packed into an extraction column. The system may include a flowing solvent source connected to an extraction column to provide a flow of solvent for extracting the raw materials. The system may also include an electrodeionizer to separate positive ions and negative ions within the flowing solvent to create an imbalance of ions and transform the solvent to a deionized solvent. In further embodiments, the extraction column includes a solvent surface layer in contact with a bed of raw materials, such that the hydraulic pressure applied within the extraction column results in the formation of catalyzing energy to generate a self-perpetuating energy cycle to extract the raw materials.
Poly-Grain Grind Matrix Of Raw Materials For Use With An Extraction Column
Embodiments of the present disclosure include a matrix of raw materials, also referred to as a poly-grain grind matrix. In some embodiments, the matrix of raw materials may form an interlocking network of varied particle grind sizes that allows the particles to nest and interlock with one another when packed into an extraction vessel, so that most, but not all of the interstitial spacing within the matrix of raw materials is closed. Additionally, the varied particle sizes may be selected by pre-determined weight ranges and size classifications so that the particle grind sizes achieve the desired consistency uniformity. This may allow the network of particles to act as its own best filtering agent during the extraction process. Moreover, the nesting and interlocking network of the particles within the matrix of raw materials may allow the particles to be effectively packed within the extraction column, thus allowing for an efficient and high quality extraction to be performed consistently each and every time.
Apparatus and methods are provided for extracting compounds from raw materials. One such apparatus may include an extraction column where it is a one column, one pass design capable of withstanding high temperatures and pressure. Additionally, the extraction column may also be capable of containing a self-perpetuating energy cycle used to achieve the required solubilization and mass transfer temperatures necessary for optimal extraction. The apparatus may also include a first opening and a second opening to control the flow of incoming solvent and filter extraneous sediment trapped within the fully extracted effluent. Additionally, the apparatus may be configured to create a self-perpetuating and self-sustaining energy cycle by manipulating the pressure and temperature generated within the apparatus. While the generated temperatures may help achieve a dynamic and efficient extraction process, a trailing cool layer of solvent is also present to effectively preserve the heat sensitive compounds extracted from the raw materials.
Flow Governor And Limiter Disc Assembly In An Extraction Column
A flow limiter system is provided for extracting compounds from raw materials with an extraction column. The flow limiter system may include a flow governor assembly which contains and buffers a flow of pressurized solvent entering the base of the extraction column to prevent the flow of pressurized solvent from drilling into the raw materials packed within the extraction column. The flow governor assembly may further include a first disc with a first set of perforations to direct the surge of solvent through the first disc to transform the turbulent surge of solvent into a column of non-turbulent solvent with a flat surface layer that rises up the extraction column evenly and collectively. Additionally, the flow limiter system may also include a limiter disc including a second set of perforations to allow the extracted effluent to flow through the set of perforations and exit the extraction column.
Wikipedia References
Stephen Corey
Isbn (Books And Publications)
Necessary Fictions: Selected Stories from the Georgia Review
Dr. Corey graduated from the Baylor College of Medicine in 1973. He works in Bethel Park, PA and 2 other locations and specializes in Obstetrics & Gynecology. Dr. Corey is affiliated with Magee Womens Hospital Of UPMC.