A high-power, switched-mode power conversion array having an input capacitance, an output capacitance, and a multiple, reconfigurable converter cells. Each of the converter cells convert an input voltage to an output voltage using switched-mode power conversion. The converter cells operate at a conversion frequency and are phase-shifted across one conversion period, so that each converter is switched ON in a time-overlapping relationship with at least one other one of the plurality of converters. As a result, the input and output current and the voltage ripple are substantially reduced, the ripple frequency of the array is increased, and the power capacity is increased. The converter cells can have a selectable conversion frequency, and thus, a selectable period. The apparatus also can include a programmable interconnection network selectably and reconfigurably connecting each cell to at least one other cell, an input node, or an output node, using serial or parallel connections. The programmable interconnection network can consist of an interconnection switch array, that include programmable elements.
Power Conversion Array Applying Small Sequentially Switched Converters In Parallel
Decreased input and output ripple current and ripple voltage on a switched mode power conversion array is realized at high power levels and frequencies by coupling an input power signal across an input capacitance to which a plurality of smaller power converter circuits are coupled in parallel. The converter circuits may have any topology now known or later devised. Each of the converter circuits are sequentially operated in a phase shifted manner across the period of the conversion frequency in a time overlapping relationship. For example, if there are N converters and the period of the conversion frequency is T, each converter circuit is triggered or switched at a phase shift corresponding to a time increment of T/N delayed with respect to the preceding or subsequent converter. The output of each of the converters is then coupled in parallel to an output capacitance. The operation of the converters may each be regulated in any manner now known or later devised and are shown in the illustrated embodiment as being pulse width modulated to provide a regulated output.