Stephen O'Driscoll - Menlo Park CA, US Ada Shuk Yan Poon - San Leandro CA, US Teresa H. Meng - Saratoga CA, US
Assignee:
The Board of Trustees of The Leland Stanford Junior University - Stanford CA
International Classification:
A61N 1/00
US Classification:
607 61, 607 33, 607 60
Abstract:
Described is an apparatus and method for increasing a gain of a transmitted power signal in a wireless link when operating in a mid field wavelength that is within a range between wavelength/100 to 100*wavelength and within a medium having a complex impedance between a transmit antenna and a receive antenna. The apparatus and method maximize the gain in the wireless link using simultaneous conjugate matching, to increase power transfer within the transmitted power signal, wherein the simultaneous conjugate matching accounts for interaction between the transmit antenna and the receive antenna, including the complex impedance of the medium between the transmit antenna and the receive antenna.
Systems And Methods For Sensors With Multimode Wireless Communications And For Enabling Nfc Communications With A Wearable Biosensor
One example system includes a biosensor applicator having a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; an applicator coil antenna oriented around a first axis; and a biosensor device including a biosensor coil antenna; a first wireless transceiver electrically coupled to the biosensor coil antenna; a Bluetooth antenna; and a second wireless transceiver coupled to the Bluetooth antenna; wherein the biosensor device is physically coupled to the biosensor applicator and positioned at least partially within the cavity; and wherein the applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a remote coil antenna and wirelessly provide at least a first portion of the received EM energy to the biosensor coil antenna.
Vertically Polarized Field Enhancer For Wearable Devices
Disclosed herein is a wearable device having a horizontally polarized antenna and a vertically polarized antenna to gain the benefit of both types of polarization resulting in optimal signal transmission to and reception by a user's smartphone or mobile device. The wearable device includes a printed circuit board on a first plane along which plane the signal from the horizontally polarized signal will propagate. The printed circuit board includes a conductive ground plane and a trace antenna conductively coupled on one end of the trace to the conductive ground plane between which the horizontally polarized field is generated when the trace antenna is excited. A vertical field enhancer, parallel to the first plane and a distance from the trace antenna, is coupled to the ground plane, such that when the trace antenna is excited, a vertically polarized field is generated between the trace antenna and the vertical field enhancer.
Miniaturized Inductive Loop Antenna With Distributed Reactive Loads
A device for implanting into, or mounting onto, a body includes an enclosure, an inductive loop antenna disposed on a surface within the enclosure, and an integrated circuit (IC) disposed within the enclosure and coupled to the inductive loop antenna. The inductive loop antenna includes one or more distributed reactive loads disposed along the inductive loop antenna that adjust a reactance of the inductive loop antenna. The one or more distributed reactive loads include signal trace sections that run along, or adjacent to, the surface upon which the inductive loop antenna is disposed. The IC includes communication circuitry coupled to the inductive loop antenna to wirelessly communicate over the inductive loop antenna. The one or more distributed reactive loads adjust the reactance of the inductive loop antenna to improve conjugate reactance matching of the inductive loop antenna to the IC.
Systems And Methods For Sensors With Multimode Wireless Communications And For Enabling Nfc Communications With A Wearable Biosensor
One example system includes a biosensor applicator having a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; an applicator coil antenna oriented around a first axis; and a biosensor device including a biosensor coil antenna; a first wireless transceiver electrically coupled to the biosensor coil antenna; a Bluetooth antenna; and a second wireless transceiver coupled to the Bluetooth antenna; wherein the biosensor device is physically coupled to the biosensor applicator and positioned at least partially within the cavity; and wherein the applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a remote coil antenna and wirelessly provide at least a first portion of the received EM energy to the biosensor coil antenna.
Device, System And Method For Detecting A Direction Of Gaze Based On A Magnetic Field Interaction
Techniques and mechanisms for determining a direction of gaze by a user of an ophthalmic device. In an embodiment, at least a portion of a magnetic field is generated by one of the ophthalmic device and an auxiliary reference device while the ophthalmic device is disposed in or on an eye of the user, and while the auxiliary reference device is adhered on the user's skin or under a surface of the skin. The ophthalmic device and the auxiliary reference device interact with each other via a magnetic field, and the interaction is detected with one or more sensors of the ophthalmic device. In another embodiment, the ophthalmic device stores predetermined reference information which corresponds various magnetic field signal characteristics each with a different respective direction of gaze. Based on the sensor information and the reference information, a controller of the ophthalmic device determines a direction in which the eye of the user is gazing.
Systems And Methods For Enabling Nfc Communications With A Wearable Biosensor
One example system for enabling NFC communications with a wearable biosensor includes a biosensor applicator including a housing defining a cavity configured to receive and physically couple to a biosensor device, and to apply the biosensor device to a wearer; a first applicator coil antenna physically coupled to the housing and defined within a first plane; and a second applicator coil antenna physically coupled to the housing and defined within a second plane substantially parallel to and different from the first plane, the second applicator coil antenna positioned coaxially with respect to the first applicator coil antenna, wherein the first applicator coil antenna is configured to wirelessly receive electromagnetic (“EM”) energy from a transmitter coil antenna of a remote device and provide at least a first portion of the received EM energy to the second coil antenna; and a biosensor device including a biosensor coil antenna defined within a third plane substantially parallel to and different than the first and second planes; a wireless receiver electrically coupled to the biosensor coil antenna; wherein the biosensor device is physically coupled to the biosensor applicator and positioned within the cavity; wherein the biosensor coil antenna is positioned and oriented substantially coaxially with respect to the second applicator coil antenna, and wherein the second applicator coil antenna is configured to receive EM energy from the first applicator coil antenna and wirelessly transmit at least a second portion of the received EM energy to the biosensor coil antenna.
Adaptive Antenna Tuning Based On Measured Antenna Impedance
- Mountain View CA, US Stephen O'Driscoll - San Francisco CA, US
International Classification:
H01Q 7/00 H01Q 1/27
Abstract:
A system includes an antenna, an impedance measurement circuit, an impedance tuning circuit, and a controller. The impedance measurement circuit can include a test current source that conveys a test current through the antenna, and a voltage sensor that measure a voltage across the antenna while the test current is conveyed through the antenna. The impedance tuning circuit can be coupled to the antenna leads and can include one or more reactive elements that can be selectively coupled to the antenna, or otherwise adjusted, to effect adjustment of the impedance connected to the antenna. The controller can: (i) use the impedance measurement circuit to obtain a measurement indicative of an impedance of the antenna; (ii) determine an adjustment to the impedance tuning circuit based on the obtained measurement; and (iii) cause the impedance tuning circuit to make the determined adjustment.