A projectile, air vehicle or submersible craft with a spinning or rolling fuselage, rotating on its axis, has a collar which can be positioned relative to a longitudinal axis of the projectile using aerodynamic forces. Aerodynamic surfaces, such as lift-producing surfaces, for example tails or canards, are coupled to the collar, and rotate with the collar. An actuator system or mechanism controls orienting of the lift-producing surfaces, such as tilting of the lift producing surfaces, to direct the collar into a desired position relative to a longitudinal axis of the projectile, and to maintain the collar in that position. With such a control the projectile is able to be steered using bank-to-turn maneuvering. The actuator system may use any of a variety of mechanisms to move the lift-producing surfaces, thereby positioning the collar.
Multi-Axial Energy Damping And Displacement Control
- Waltham MA, US Stevie Alejandro - Sahuarita AZ, US
International Classification:
F16F 1/06 F16F 15/08
Abstract:
An energy damping and displacement control device is disclosed. The energy damping and displacement control device can include a contact protrusion and an energy damping pad constructed of a resilient material. The energy damping pad can have a first face oriented along a first plane. The energy damping pad can also have a second face oriented along a second plane transverse to the first plane, and toward the contact protrusion. In a static condition, the first and second faces of the energy damping pad can be separated from the contact protrusion. In a dynamic condition, displacement motion of the contact protrusion relative to the energy damping pad can be limited by contact with at least one of the first or second faces of the energy damping pad, which provides energy damping and motion displacement control of the contact protrusion in multiple axes.
Air Vehicle With Control System Mechanical Coupler
- Waltham MA, US Stevie Alejandro - Sahuarita AZ, US Jerry D. Robichaux - Tucson AZ, US Alfredo Ramos - Tucson AZ, US Heinz D. Klemm - Sequim WA, US Bryan W. Nickel - Tucson AZ, US Andrew P. Douglas - Tucson AZ, US
International Classification:
F42B 10/64 F42B 15/01 F42B 10/02 F42B 15/10
Abstract:
An air vehicle, such as a munition like a guided bomb or missile, has a control system that allows control surfaces to be mechanically uncoupled from one or more actuators to allow the control surfaces to freely move (rotate) relative to a fuselage of the vehicle, for example allowing the control surfaces to “weather vane” by assuming an orientation corresponding to the direction of airflow past the air vehicle (direction of airflow relative to the air vehicle). When active positioning of the control surfaces is desired, the control surfaces may be mechanically coupled to one or more actuators that are used to position the control surfaces. The selective coupling of the actuator(s) and the control surfaces may be accomplished by selectively coupling together a sleeve that is mechanically coupled to the control surfaces, and a nut that moves along a shaft of an actuator, for example using a resilient device.