George E. Creech - Indianapolis IN Subhash K. Naik - Carmel IN Paul S. Korinko - Aiken SC
Assignee:
Rolls-Royce Corporation - Indianapolis IN
International Classification:
C23C 2270
US Classification:
148242, 148678, 427191, 427192
Abstract:
A âone-stepâ method of forming diffused noble metal-aluminide coatings with or without minor incorporations of Si, Cr, Mn, Hf, La, and Y, is disclosed. With the inventive method, two or more powdered metals or metal alloys are applied and diffused into the metal substrate together, using a sequential multi-stage heating process. This method contrasts with the prior art technology where metals were applied and diffused into the substrate separately.
Dry film lubricant coatings are provided by using a silicone resin binder, either as an aqueous emulsion or in a solvent-based system, to fix an alkaline earth metal fluoride to a substrate. The compositions used to apply the coatings may also include relatively minor amounts of xylene, ammonium benzoate, a wetting agent, and/or a porosity-inducing agentâalthough none of those additives remains in the cured coating. Multi-layer dry film lubricant coatings are also disclosed, with the multi-layer coating having a basecoat layer as described above, and a topcoat layer made of a layer-lattice solid such as graphite or molybdenum disulfide, and a silicone resin, aluminum phosphate or an alkali metal silicate binder.
George Edward Creech - Indianapolis IN, US Subhash Krishna Naik - Carmel IN, US
Assignee:
Rolls-Royce Corporation - Indianapolis IN
International Classification:
B21D 39/00
US Classification:
428621
Abstract:
In general, the present invention provides coating systems and processes for applying a selected coating system on a metallic substrate. The coating system includes two or more coating layers. A first layer comprises a MCrAl(Y,Hf)-type coating. The MCrAl(Y,Hf) coating is overlaid with a second coating composition that includes a metallic composition different from the MCrAl(Y,Hf) coating composition and includes one or more of: a platinum, silicon containing composition; a platinum, silicon, aluminum containing composition; a platinum, silicon, chromium containing composition; an aluminum, silicon containing composition; and an aluminum, silicon, chromium containing composition; each optionally combined with one or more of chromium, hafnium, lanthanum, manganese, yttrium and mixtures of these metals. Additionally the platinum in the metallic compositions can be exchanged in whole or in part by another noble metal. The resulting coating composition is subsequently heat treated to provide a diffused multilayer corrosion-resistant coating.
George Edward Creech - Indianapolis IN, US Subhash Krishna Naik - Carmel IN, US
International Classification:
C25D 13/02
US Classification:
204487
Abstract:
In general, the present invention provides coating systems and processes for applying a selected coating system on a metallic substrate. The coating system includes two or more coating layers. A first layer comprises a MCrAl(Y, Hf)-type coating. The MCrAl(Y, Hf) coating is overlaid with a second coating composition that includes a metallic composition different from the MCrAl(Y, Hf) coating composition and includes one or more of: a platinum, silicon containing composition; a platinum, silicon, aluminum containing composition; a platinum, silicon, chromium containing composition; an aluminum, silicon containing composition; and an aluminum, silicon, chromium containing composition; each optionally combined with one or more of chromium, hafnium, lanthanum, manganese, yttrium and mixtures of these metals. Additionally the platinum in the metallic compositions can be exchanged in whole or in part by another noble metal. The resulting coating composition is subsequently heat treated to provide a diffused multilayer corrosion-resistant coating.
Techniques For Depositing Coating On Ceramic Substrate
Subhash K. Naik - Carmel IN, US Raymond J. Sinatra - Indianapolis IN, US
Assignee:
Rolls-Royce Corporation - Indianapolis IN
International Classification:
C23C 4/10 C23C 4/12
US Classification:
427452
Abstract:
A method of coating a substrate, the method including depositing mullite on the substrate during a first time period via thermal spraying to form a first layer, the mullite comprising mullite powder formed via at least one of a fused plus crush or sinter plus crush process; and depositing a second material on the first layer to form a second layer, wherein the substrate is at a temperature less than approximately 50 degrees Celsius at approximately a beginning of the first time period. In some embodiments, the method may further include depositing silicon to form a silicon bond layer between the substrate and mullite layer.
George Edward Creech - Indianapolis IN, US Subhash Krishna Naik - Carmel IN, US
International Classification:
B05D 3/02 B05D 1/36 C25D 13/02
US Classification:
4273837, 204484
Abstract:
In general, the present invention provides coating systems and processes for applying a selected coating system on a metallic substrate. The coating system includes two or more coating layers. A first layer comprises a MCrAl(Y,Hf)-type coating. The MCrAl(Y,Hf) coating is overlaid with a second coating composition that includes a metallic composition different from the MCrAl(Y,Hf) coating composition and includes one or more of: a platinum, silicon containing composition; a platinum, silicon, aluminum containing composition; a platinum, silicon, chromium containing composition; an aluminum, silicon containing composition; and an aluminum, silicon, chromium containing composition; each optionally combined with one or more of chromium, hafnium, lanthanum, manganese, yttrium and mixtures of these metals. Additionally the platinum in the metallic compositions can be exchanged in whole or in part by another noble metal. The resulting coating composition is subsequently heat treated to provide a diffused multilayer corrosion-resistant coating.
Engine Hot Section Component And Method For Making The Same
Subhash K. Naik - Carmel IN, US Charles J. Teague - Indianapolis IN, US
International Classification:
F01D 1/00 B05D 3/10 B05D 1/36
US Classification:
4151821, 427402, 427327, 4274193, 427299
Abstract:
One embodiment of the present invention is a unique engine hot section component having a coating system operative to reduce heat transfer to the hot section component. Another embodiment is a unique method for making a gas turbine engine hot section component with a coating system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines, hot section components and coating systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
Durable Environmental Barrier Coatings For Ceramic Substrates
An article includes a substrate and an environmental barrier coating overlying the substrate. The environmental barrier coating includes a first dense layer, an intermediate layer overlying the first dense layer, and a second dense layer overlying the intermediate layer. The first dense layer includes at least one of a first rare earth silicate or barium strontium aluminosilicate and the second dense layer includes at least one of a second rare earth silicate or barium strontium aluminosilicate. Additionally, the intermediate layer includes at least one of a porous microstructure, a lamellar microstructure, or an absorptive material.