Abstract:
In order to accommodate post-manufacturing, or secondary operations in precision assemblies using composite materials, where the secondary operations consist of drilling, machining, grinding, lapping, or other material-removing processing, without the need to resort to expensive diamond tooling and while maintaining needed structural integrity, a composite formed of a base material, a matrix, and a machineable material is provided. The matrix is bonded to the base material and the machineable material is rendered integral with the matrix and sufficiently thick to accommodate subsequent material-removing processing to a precision dimension. By utilizing the composite, method of forming the composite, and article of manufacture, it is possible to take advantage of the characteristics of high strength and light weight even in precision assemblies due to the fact that the machineable surface is not required for structural integrity, and the machineable surface can be applied for initial machining or other material-removing processing and reapplied for subsequent machining or other material-removing processing to restore worn or damaged surfaces.