A method and apparatus are shown for integrating a photodiode and a receiver circuit on a single substrate. An input signal is received with the photodiode. The receiver circuit is configured to suppress feedback from an output terminal of the receiver circuit to the photodiode by amplifying the input signal to produce an amplified input signal, controlling the gain of the input signal amplification responsive to the magnitude of the amplified input signal, comparing the amplified input signal to a detection threshold voltage to produce a digital data signal, and holding the gain at a substantially constant level in response to a fast signal transition in the digital output signal.
Method And Apparatus For Receiving Infrared Signals With Improved Noise Immunity
Wayne T. Holcombe - Palo Alto CA Brian B. North - Los Gatos CA
Assignee:
Integration Associates, Inc. - Mountain View CA
International Classification:
H04B 110
US Classification:
455307, 455296, 379 563, 348189
Abstract:
Disclosed is a method and apparatus for receiving infrared signals that is better able to receive a data signal in the presence of a noise signal. The method according to the present invention involves bandwidth filtering an incoming signal that includes a data signal and a noise signal. The bandwidth filtered signal is then averaged to obtain an average alternating current (AC) value signal of the bandwidth filtered signal. The average AC value signal is integrated to obtain a detect level adjustment signal. The detect level adjustment signal is summed with a minimum detect threshold value to obtain a detection level signal. The incoming signal is then compared to the detection level signal in order to produce a received data signal.
Method For Producing A Thin Distributed Photodiode Structure
Jean-Luc Nauleau - Los Gatos CA Wayne T. Holcombe - Palo Alto CA Pierre Irissou - Sunnyvale CA
Assignee:
Integration Associates, Inc. - Mountain View CA
International Classification:
H01L 2714
US Classification:
257431
Abstract:
A method is shown for producing a distributed PN photodiode having a first active region of the photodiode that can be made arbitrarily thin. A fabrication substrate is doped to have a first conductivity type in order to form the first active region of the photodiode. A layer can also be formed upon the first surface of the fabrication substrate or a first surface of a handling wafer, where the layer can be an oxide layer, where a thickness of the oxide layer can be controlled to form a dielectric refractive reflector, a reflective layer, or a conductive layer. The first surface of the handling substrate is bonded to the first surface of the fabrication substrate. A second surface of the fabrication is then lapped to a obtain a preselected thickness of the first active region. A plurality of second active regions of the photodiode having a second conductivity type is formed on the second surface of the fabrication substrate. A contact having a plurality of connective traces is formed on the second surface of the fabrication substrate, where the connective traces are electrically coupled to the second active regions.
Apparatus And Method For An Integrated Photodiode In An Infrared Receiver
A method and apparatus are shown for integrating a photodiode and a receiver circuit on a single substrate. An input signal is received with the photodiode. The receiver circuit is configured to suppress feedback from an output terminal of the receiver circuit to the photodiode by amplifying the input signal to produce an amplified input signal, controlling the gain of the input signal amplification responsive to the magnitude of the amplified input signal, comparing the amplified input signal to a detection threshold voltage to produce a digital data signal, and holding the gain at a substantially constant level in response to a fast signal transition in the digital output signal.
Matthijs D. Pardoen - Sunnyvale CA Wayne T. Holcombe - Mountain View CA
Assignee:
Integration Associates Inc. - Mountain View CA
International Classification:
H02M 342
US Classification:
361 84
Abstract:
A circuit and method are shown for battery reversal protection. The circuit includes a first transistor that buffers a bulk terminal of a protected transistor from an input terminal for receiving a power supply voltage. A second transistor is coupled to both the input terminal of the circuit and an output terminal of the circuit and detects when the power supply voltage falls below an output voltage at the output terminal and, responsive thereto, switches off the first transistor to isolate the bulk terminal of the protected transistor from the input terminal. Another aspect of the invention provides current reversal protection using a third transistor that also detects when the power supply voltage falls below an output voltage at the output terminal and, responsive thereto, conducts current from the output terminal to the gate terminal of the protected transistor. In yet another aspect of the invention, a bulk of the third transistor is coupled to a low current circuit to provide current to the low current circuit from the output terminal when power at the input terminal is interrupted. Because of low current demands on the transistors of the protection circuit, small area transistors may be used to implement the protection circuit using reduced die area.
Shielded Planar Dielectrically Isolated High Speed Pin Photodiode And Method For Producing Same
Pierre R. Irissou - Sunnyvale CA Brian B. North - Los Gatos CA Wayne T. Holcombe - Palo Alto CA Stephen F. Colaco - Santa Cruz CA
Assignee:
Integration Associates, Inc. - Mountain View CA
International Classification:
H01L 31075
US Classification:
257458, 257459
Abstract:
A PIN photodiode and method for forming the PIN photodiode are shown where an intrinsic layer of the photodiode can be made arbitrarily thin and a second active region of the photodiode substantially shields a first active region of the photodiode. A fabrication substrate is lightly doped in order to form the intrinsic layer of the photodiode. A void is formed in a first surface of the fabrication substrate and a first active region of the photodiode having a first conductivity type is formed in the void. An oxide layer is also formed upon the first surface of the fabrication substrate. A handling substrate is bonded to the first surface of the fabrication substrate. A second surface of the fabrication substrate is then lapped to a obtain a preselected thickness of the intrinsic layer. A depth of the void is selected such that a portion of the first active region is exposed at the second surface of the fabrication substrate after lapping. A second active region of the photodiode having a second conductivity type is formed on the second surface of the fabrication substrate.
Distributed Photodiode Structure Having Majority Dopant Gradient And Method For Making Same
A distributed photodiode structure is shown formed on a semiconductor substrate having a first dopant type where a first plurality of diffusions of a second dopant type are formed on a first surface of the substrate. A second plurality of diffusions having the first dopant type are formed on the first surface of the substrate between the first plurality of diffusions. In a further refinement, a second surface of the substrate is diffused with the first dopant type. In yet another refinement, a plurality of trenches are formed on the first surface and the second plurality of diffusions are formed within the trenches.
Method And Apparatus For Isolation In A Data Access Arrangement Using Analog Encoded Pulse Signaling
Wayne T. Holcombe - Mountain View CA, US Matthijs D. Pardoen - Sunnyvale CA, US
Assignee:
Integration Associates Inc. - Mountain View CA
International Classification:
H04M 1/00 H04M 9/00 H04M 9/08
US Classification:
37939902
Abstract:
The present invention is directed toward a method and apparatus for transferring data across an isolation barrier using high speed analog encoded signals. A line side circuit interfaces with tip and ring contacts on one side of a capacitive isolation barrier that isolates the line side circuit from a modem side circuit. During an on-hook state, the line side circuit converts an analog line side voltage signal to a frequency signal and then encodes the frequency signal into a high frequency pulse-width-modulated (PWM) signal. The high frequency PWM signal is transmitted across the capacitive isolation barrier to the modem side circuit. During an off-hook state, the analog line side voltage is again encoded into a high frequency pulse-width-modulated (PWM) signal for transmission across the isolation barrier. The modem side circuit recovers the transmitted PWM signal and converts it into a digital count value that represents the amplitude of the analog voltage observed at the tip and ring. The digital count value may be directly processed by a processor on the modem side or may be converted back to an analog signal.