Donald J. Borisch - Cincinnati OH Gary V. Hanrahan - Mason OH Herbert E. Merritt - Cincinnati OH
Assignee:
Cincinnati Milacron Inc. - Cincinnati OH
International Classification:
G06F 1546
US Classification:
364550
Abstract:
A machine operation monitor is provided for detecting malfunctions during execution of a machine cycle of operation irrespective of the activity being performed. Load levels of machine member driving means are periodically sampled and compared against limits computed by the monitor. The limit calculation uses net force or torque measured by storing load level samples during two preparatory executions of the machine cycle of operation. During the first execution a finished workpiece is produced using good tools. During the second execution no workpiece is present. The differences between load level samples taken during these two executions represent the net force required to perform work on the workpiece. The monitor responds to synchronization signals to maintain correspondence between load level samples taken in successive executions of the machine cycle. The monitor also responds to monitor off signals to suspend monitor operation during periods of no activity in the machine cycle.
Kirby Lee Stone - Cincinnati OH Donald James Borisch - Cincinnati OH
Assignee:
Cincinnati Milacron Inc. - Cincinnati OH
International Classification:
B01F 1500 B67D 508
US Classification:
366 76
Abstract:
Liquid reaction molding (LRM) shot size and ratio control is achieved using a programmable controller (microprocessor) to select on a first-come-first-served basis one mold from among several and to manipulate a plunger metering pump system by retracting each of a pair of pump plungers to the same position each time the system is reset and to decompress or reduce pressures after injection. Each and every shot is started from this uniform reset position. Later steps in the sequence are: taking the hydraulic slack out of each pump system by prepressurizing which is done by advancing each plunger from said position independently until each and all liquid systems reach a threshold pressure (which pressure may differ from one liquid system to the other), feeding the shot size or quantity of each liquid (i. e. injection) by advancing the plunger a predetermined amount (or stroke) from the place it arrives upon reaching the threshold pressure, and to decompress by reversing plunger movement after injection but before any valve manipulations occur. Ratio control is exercised by slaving one plunger to another plunger during injection.