A flywheel interface system for line interactive power correction comprises a flywheel system that includes a flywheel coupled to rotate with a motor/generator. A passive rectifier is coupled to the flywheel system for converting alternating current generated by the flywheel system to direct current. An active inverter is coupled to the passive rectifier for converting the direct current from the passive rectifier to alternating current and to output the alternating current to the load. A motor drive is coupled to the motor/generator of the flywheel system for driving the motor/generator to rotate the flywheel, the motor drive including a second passive rectifier coupled to a second active inverter.
An electric machine includes a generally annular outer rotor supported to rotate about a rotational axis. The outer rotor defines an internal cavity therein and has a plurality of permanent magnets in the internal cavity generating a first magnetic field. An inner rotor is in the internal cavity and is supported to rotate about the rotational axis. The inner rotor has a plurality of permanent magnets about its perimeter that generate a second magnetic field. A generally annular stator is in the internal cavity between the outer rotor and the inner rotor. The stator has a stator winding supported by a non-magnetically conductive stator core. The stator winding is arranged to generate a field that interacts with the first and second magnetic fields. One of the outer rotor or the inner rotor is mechanically coupled to drive a load. The other of the outer rotor or the inner rotor is not mechanically coupled to drive the load.
An electric machine is configured to be positioned within a wellbore. The electric machine enclosed within a housing isolates the electric machine from fluids within the wellbore. A first lubrication circuit includes a lubrication reservoir within the housing. The lubrication reservoir is fluidically connected to the electric machine. The first lubrication circuit is configured to provide lubrication to a bearing within the electric machine. A fluid rotor is configured to move or be moved by a fluid within the wellbore. A magnetic coupling couples the fluid rotor and a rotor of the electric machine to rotate in unison. A second lubrication circuit is configured to provide lubrication to a bearing supporting the fluid rotor.
A downhole-type device includes an electric machine. The electric machine includes an electrical rotor configured to couple with a device to drive or be driven by the electric machine. An electrical stator surrounds the electric rotor. The electric stator includes a seal configured to isolate stator windings from an outside, downhole environment. An inner surface of the seal and an outer surface of the electric rotor define an annulus exposed to the outside environment. A bearing couples the electric rotor to the electric stator. A lubrication system is fluidically coupled to the downhole-type device. The lubrication system includes a topside pressure pump and a downhole-type distribution manifold configured to be used within a wellbore. The distribution manifold is fluidically connected to the topside pressure pump and the bearing to receive a flow of lubricant from the topside pressure pump.
A downhole-type device includes a fluid-end with a fluid rotor configured to move or be rotated by wellbore fluids. A fluid stator surrounds and supports the fluid rotor. A first bearing couples the fluid rotor to the fluid stator. A second bearing couples the fluid rotor to the fluid stator. An electric machine includes an electrical rotor rotably coupled to the fluid rotor. The electric rotor is configured to rotate in unison with the fluid rotor. An electrical stator surrounds and supports the electric rotor. A lubrication system is fluidically coupled to the downhole-type device. The lubrication system includes a topside pressure pump. A downhole-type distribution manifold is within a wellbore. The distribution manifold fluidically connects to the topside pressure pump, the first bearing, and the second bearing.
- Cerritos CA, US Patrick McMullen - Yorba Linda CA, US
Assignee:
Upwing Energy, LLC - Cerritos CA
International Classification:
E21B 43/12 E21B 33/12
Abstract:
An electric motor is configured to be positioned in a well. The motor includes a housing flooded with an incompressible fluid, a seal, a stator in the housing, and a rotor-impeller. The housing is configured to affix to a tubing of the well. The housing defines an inner bore having an inner bore wall continuous with an inner wall of the tubing for flow of well fluid. The housing defines a port that can be in fluid communication with the well. The seal seals the port against ingress of fluid. The seal is movable by the well fluid to apply a pressure on the incompressible fluid to equalize pressure between the incompressible fluid and the well fluid. The rotor-impeller is configured to be positioned within the inner bore of the housing. The rotor-impeller is configured to be retrievable from the well while the stator remains in the well.
Reducing Bearing Load In A Regenerative Turbine Pump
A regenerative turbine impeller includes a first side and a second side. An impeller housing surrounds the regenerative turbine impeller. The impeller housing includes a seal separating the first side and the second side of the regenerative turbine impeller. A first fluid inlet is fluidically coupled to the first side of the regenerative turbine impeller. A first fluid outlet is fluidically coupled to the first side of the regenerative turbine impeller. A second fluid inlet is fluidically coupled to the second side of the regenerative turbine impeller. A second fluid outlet is fluidically coupled to the second side of the regenerative turbine impeller.
Active Magnetic Bearing Control For Downhole-Type System
- Cerritos CA, US Patrick McMullen - Villa Park CA, US
Assignee:
Upwing Energy, LLC - Cerritos CA
International Classification:
E21B 43/12 E21B 47/09 E21B 47/12
Abstract:
A downhole-type system includes a rotatable shaft, a downhole-type magnetic bearing coupled to the rotatable shaft, a downhole-type sensor, a surface-type controller, and a surface-type amplifier coupled to the magnetic bearing. The magnetic bearing can control levitation of the rotatable shaft. The downhole-type sensor can detect a position of the rotatable shaft in a downhole location and generate a first signal based on the detected position. The surface-type controller can receive the first signal, determine an amount of force to apply to the shaft, and generate a second signal corresponding to the determined amount of force. The surface-type amplifier can receive the second signal, amplify the second signal to a sufficient level to drive the magnetic bearing to apply force to the rotatable shaft to control the levitation of the rotatable shaft at the downhole location, and transmit the amplified second signal to the magnetic bearing.
Business Law Employment Law Personal Injury Class Actions, Mass Torts, and Aggregated Litigation ERISA Litigation General Civil
Jurisdiction:
District of Columbia District of Columbia; Maryland
Education:
Wake Forest University, MA Mary Washington College, BS Northwestern University
Links:
Website
Googleplus
Patrick Mcmullen
Lived:
Virginia Beach, VA Moyock, NC Gibraltar, Gibraltar Newquay, Cornwall, UK Newfoundland, Canada Scranton, PA Victoria, BC, Canada Mt Pocono, PA Murrieta, CA
Education:
Calvary Chapel Bible College - Theology
Tagline:
Hey it's Patrick
Patrick Mcmullen
Work:
AmeriCTO - CEO JobbDepot - Sales Manager TD Bank - Oracle DBA Hydro Quebec - Oracle DBA Ville de Montreal - Oracle DBA Federal Gouvernment - Oracle DBA Provincial Gouvernment - Oracle DBA
Education:
McGill University - MIS, Oracle - Oracle DBA
About:
Owner of multiple corporations across the USA & Canada.
Patrick Mcmullen
Work:
Fizziology - Senior Analyst (2012) DavesComputerTips.com - Writer / Editor (2011-2012) Indiana University - Research technician (2011-2012)
Education:
DePauw University - Psychology
Tagline:
The mind: it's what the brain does
Bragging Rights:
Graduated DePauw never taking a class before 10:00am