A dense, resilient, non-woven staple polymer fiber batt is formed of either of a plurality of overlayed, relatively thin webs or at least one relatively thick web. The web or webs comprise at least first and second staple polymer fiber constituents blended to form a homogenous mixture. The first fiber constituent has a relatively low melting temperature and the second fiber constituent has a relatively high melting temperature. The fibers of the first fiber constituent are fused by heat to themselves and to fibers of a second fiber constituent to interconnect the fibers while in a vacuum-compressed state. The heat is sufficient to melt the fibers of the first fiber constituent but not high enough to melt the fibers of the second fiber constituent. Therefore, the fibers of the first fiber constituent retain a plastic memory of the batt in its compressed state to hold the interconnected web layers together at the compressed thickness of the batt, and the fibers of the second fiber constituent retain the plastic memory of the fibers in their non-compressed state to provide substantial resilience.
Process And Apparatus For Blowing Continuous Filament Tow
Continuous filament tow is partially deregistered, preferably by passing over threaded rolls; and, after being partially deregistered, fully bloomed in an air-blooming mechanism. The air-blooming mechanism draws the partially deregistered tow into a turbulent air flow, maximizing bloom; and then carries the tow after blooming directly into a casing for formation of pillows, cushions, or the like articles. The process is simple and economical.
A method of forming a vacuum bonded non-woven batt includes the steps of blending at least first and second staple polymer fiber constituents. One of the fiber constituents has a relatively low predetermined melting temperature and the other a relatively high melting temperature. The intermixture is formed either into a relatively thick single layer web or a relatively thin web which is then formed into a relatively thick multilayer web structure. The web structure is positioned on a rotating, air permeable drum and a vacuum is used to substantially reduce the thickness and increase the density of the web structure. The web structure is heated to a temperature at or above the relatively low melting temperature of the first fiber constituent and below the melting temperature of the second fiber constituent while under vacuum to release the plastic memory of the fibers of the first fiber constituent in their compressed configuration. The two types of fibers are fused to themselves to form a batt having intimately interconnected and fused first and second fiber constituents. The apparatus on which the above method is performed includes a housing having two perforated counter-rotating drums positioned therein with vacuum means for applying a vacuum through the drum and through the web structure to reduce the thickness and increase the density of the web structure by vacuum pressure alone.