A rotor for a pneumatic tool having electricity-generating capabilities includes a shaft and an integral rotor body. The rotor body includes recesses dimensioned to receive an insulated subassembly having a magnet received within a nonmagnetic insulator to allow flux to be concentrated against stator windings. The rotor can be used in a conventional pneumatic tool, but can also be fitted with the insulated subassemblies in order to cooperate with a stator in the tool to generate electricity upon rotation of the rotor when pressurized fluid is applied to the vanes. A ring stator is connected to a supporting circuit by a connector and is supportable by a nonmagnetic end plate of the pneumatic tool and is disposed between the rotor and the rotor bearing.
Tool Having Integrated Electricity Generator With External Stator
A tool includes a nonmagnetic tool housing; a cylindrical rotor inside the tool housing and rotatable in response to a flow of pressurized fluid through the tool housing; magnets mounted in the rotor; and a stator on the exterior of the tool housing. The stator is dimensioned to cooperate with the magnets to, upon rotation of the rotor, generate electrical current for supply to a load.
Pneumatic Tool With Integrated Electricity Generator
A rotor for a pneumatic tool having electricity-generating capabilities comprises a shaft and an integral rotor body. The rotor body includes recesses dimensioned to receive an insulated subassembly comprising a magnet received within a nonmagnetic insulator. The nonmagnetic insulator acts to allow flux to be concentrated against stator windings. The improved rotor can be fitted with the insulated subassemblies in order to cooperate with a stator in the tool to generate electricity upon rotation of the rotor when pressurized fluid is applied to the vanes. A ring stator is supportable by a nonmagnetic end plate of the pneumatic tool, is disposed between the rotor and the rotor bearing and is preferably formed of Silicon Core Iron “B-FM” and magnet wire.
Tool Having Integrated Electricity Generator With External Stator And Power Conditioner
A tool includes a nonmagnetic tool housing, a cylindrical rotor inside the tool housing and rotatable in response to a flow of pressurized fluid through the tool housing and magnets mounted in the rotor. A stator is positioned on the exterior of the tool housing, and is dimensioned to cooperate with the magnets to, upon rotation of the rotor, generate electrical current for supply to a load. The stator includes an inductor core having opposing ends connected by a middle portion, and a coil wound around the middle portion, where both the inductor core and coil are configured to be arced between the opposing ends about the axis of rotation of the rotor, and the inductor core is configured to provide a consistent gap between the face of the inductor core and the face of each magnet while each magnet is being rotated between positions proximal the opposing ends, the inductor core having a length to enable its opposing ends to each be simultaneously radially aligned with a respective magnet in the rotor to complete a magnetic circuit through the inductor core. The tool also includes a power conditioner receiving the generated electrical current and conditioning the current to be acceptable for supply to a load that comprises one or more logic processing devices.
Jon J. Leininger - Wilson NY, US Bob Bonham - Oakville, CA
International Classification:
B23K 9/20
US Classification:
219 98, 219119
Abstract:
A stud weld head includes an electrode with a base for attaching the electrode to the stud welder; a body extending from the base and having a stud receiving cavity; and a retention device associated with the stud receiving cavity to permit entry and removal of a stud from the cavity without contact with the retention device. The improved stud weld head retains the stud during the welding operation reducing the chances that the stud inconveniently falls out of the stud receiving cavity.
Induction-Powered Device, And Power Tool Attachment And Power Tool Comprising Same
Jon J. Leininger - Wilson NY, US Richard A. Hornung - Hamilton Township, CA
International Classification:
B25B 23/18 B25F 5/02 H02K 1/27 H02K 7/14
Abstract:
An induction-powered device for use in an alternating magnetic field comprises: a magnetically permeable core; an electrically conductive coil surrounding the core; and an electrical load electrically connected to the coil. The coil is configured to generate a voltage when exposed to the alternating magnetic field, to power the electrical load.