Dr. Liu graduated from the Shandong Med Univ, Jinan, Shandong, China (242 46 Prior 1 1 71) in 1990. He works in Decatur, IN and specializes in Internal Medicine and Neurology. Dr. Liu is affiliated with Adams Memorial Hospital.
Valery N. Khabashesku - Houston TX, US Yu Liu - Houston TX, US John L. Margrave - Bellaire TX, US
Assignee:
William Marsh Rice University - Houston TX
International Classification:
C01B 31/06
US Classification:
423446
Abstract:
The present invention is directed to functionalized nanoscale diamond powders, methods for making such powders, applications for using such powders, and articles of manufacture comprising such powders. Methods for making such functionalized nanodiamond powders generally comprise a fluorination of nanodiamond powder. In some embodiments, such methods comprise reacting fluorinated nanodiamond powder with a subsequent derivatization agent, such as a strong nucleophile.
Systems And Methods For Initiating Adjustment Of An Operation Associated With An Underwater Drilling System
This disclosure is directed to initiating adjustment of an operation associated with an underwater drilling system, which may include receiving at least one underwater image; identifying the reference object in the at least one underwater image, wherein a position of the reference object is fixed relative to an underwater borehole or an underwater cloud; determining a first parameter associated with the reference object; identifying the underwater cloud in the at least one underwater image; determining a second parameter associated with the underwater cloud; adjusting the second parameter associated with the underwater cloud based on the first parameter associated with the reference object; and initiating an adjustment of the operation associated with the underwater drilling system based on the adjusted second parameter associated with the underwater cloud.
Methods For Operating Acetylene Hydrogenation Units During Integration Of Chemical Processing Systems For Producing Olefins
A method for operating an acetylene hydrogenation unit of a steam cracking system that integrates a fluidized catalytic dehydrogenation (FCDh) effluent from a fluidized catalytic dehydrogenation (FCDh) system may include separating a cracked gas from the steam cracking system into at least a hydrogenation feed comprising at least acetylene, CO, and hydrogen, introducing the FCDh effluent to the separation system, combining the FCDh effluent with the cracked gas upstream of the separation system, or both. The method may include hydrogenating acetylene in the hydrogenation feed. Elevated CO concentration in the hydrogenation feed due to the FCDh effluent may reduce a reaction rate of acetylene hydrogenation. The acetylene hydrogenation unit may operate at an elevated temperature relative to normal operating temperatures when the portion of the FCDh effluent is not integrated, such that a concentration of acetylene in the hydrogenated effluent is less than a threshold acetylene concentration.
Methods For Operating Integrated Chemical Processing Systems For Producing Olefins
A method for operating an integrated system for producing olefins may include contacting a hydrogenation feed with a first hydrogenation catalyst to produce a hydrogenated effluent, the hydrogenation feed including at least a portion of a first process effluent from a first olefin production process and at least a portion of a second process effluent from a second olefin production process. The hydrogenation feed may include at least hydrogen, ethylene, carbon monoxide, acetylene, methyl acetylene, and propadiene, and the first hydrogenation catalyst may be a hydrogenation catalyst having a temperature operating range of at least 40 C. The hydrogenated effluent may include methyl acetylene, propadiene, or both. The method may further include contacting at least a portion of the hydrogenated effluent with a second hydrogenation catalyst, which may cause hydrogenation of at least a portion of the methyl acetylene and propadiene to produce an MAPD hydrogenated effluent.
Methods For Operating Acetylene Hydrogenation Units In Integrated Steam Cracking And Fluidized Catalytic Dehydrogenation Systems
- Midland MI, US Hangyao Wang - Pearland TX, US Yu Liu - Lake Jackson TX, US Matthew T. Pretz - Lake Jackson TX, US Andrzej Malek - Midland MI, US
Assignee:
Dow Global Technologies LLC - Midland MI
International Classification:
C07C 5/333 C07C 4/04 C07C 7/167 B01J 23/62
Abstract:
A method for operating an acetylene hydrogenation unit in an integrated steam cracking-fluidized catalytic dehydrogenation (FCDh) system may include separating a cracked gas from a steam cracking system and an FCDh effluent from an FCDh system into a hydrogenation feed and an acetylene-depleted stream, the hydrogenation feed comprising at least hydrogen, CO, and acetylene. During normal operating conditions, at least 20% of the CO in the hydrogenation feed is from the cracked gas. The method may include contacting the hydrogenation feed with an acetylene hydrogenation catalyst to hydrogenate at least a portion of the acetylene in the hydrogenation feed to produce a hydrogenated effluent. The steam cracking is operated under conditions that increase CO production such that a concentration of CO in the cracked gas is great enough that when a flowrate of the FCDh effluent is zero, a CO concentration in the hydrogenation feed is at least 100 ppmv.
Methods and systems for generating a universal computer model for assessing a risk in an electronic transaction based on one or more risk assessment models are presented. The one or more risk assessment models may be incompatible with each other. Different portions of a risk assessment models may be extracted from the risk assessment models. A node structure is generated for each risk assessment model based on the portions extracted from a corresponding risk assessment model. The node structures generated based on the risk assessment models are merged to produce a merged node structure. The universal computer model is generated based on the merged node structure.
- Berkeley CA, US Xi Chen - Berkeley CA, US Mostafa Rohaninejad - Saratoga CA, US Nikhil Mishra - Irvine CA, US Yu Xuan Liu - Sugar Land TX, US Andrew Amir Vaziri - Lutherville MD, US Haoran Tang - Emeryville CA, US Yide Shentu - Berkeley CA, US Ian Rust - San Francisco CA, US Carlos Florensa - Berkeley CA, US
International Classification:
B25J 9/16 B25J 15/06 B25J 19/02
Abstract:
Various embodiments of the present technology generally relate to robotic devices and artificial intelligence. More specifically, some embodiments relate to a robotic device for picking items from a bin and perturbing items in a bin. In some implementations, the device may include one or more computer-vision systems. A computer-vision system, in accordance with the present technology, may use at least two two-dimensional images to generate three-dimensional (3D) information about the bin and items in the bin. Based on the 3D information, a strategy for picking up items from the bin is determined. When no strategies with high probability of success exist, the robotic device may perturb the contents of the bin to create new available pick-up points and re-attempt to pick up an item.
Hysteresis Based Dc Offset Corrector For Current Reconstruction When Using Discontinuous Pwm
Disclosed embodiments are directed to a technique to remove DC offset from current measurement signals through shunt resistors in digital signal processing for current reconstruction when using discontinuous pulse width modulation (DPWM). Such measurements regarding current are pertinent to a feedback loop used for a system including a DC-link capacitor, inverter, and motor. A method of removing DC offset comprises: determining a three-phase output current signal of an inverter, wherein the inverter is coupled to a motor and a power supply; producing a voltage signal based on the three-phase output current signal and the resistances of one or more shunt resistors disposed in the inverter; applying an analog gain circuit to the voltage signal; processing the voltage signal with an analog-to-digital converter (ADC); applying a DC offset corrector to the voltage signal; and performing current reconstruction on the voltage signal to produce a continuous current signal.
Name / Title
Company / Classification
Phones & Addresses
Mr Yu Tong Liu Owner
Kaminari Restaurants
3260 Highland Road, Suite 5, Baton Rouge, LA 70802 2253830999
Mr. Yu (Young) Liu Manager
DF Computer Centre Computers - Service & Repair
11 - 448 Welland Ave., St Catharines, ON L2M 7V3 9056881992
Yu Hong Liu President
CPG POLYMER USA LTD
14905 SW Fwy, Sugar Land, TX 77478
Yu Qing Liu Director, President
SOLIC, INC
208 Greenspoint Mall, Houston, TX 77060 10203 Forum Park Dr STE 220, Houston, TX 77036