Provided herein are embodiments of systems and methods for classifying one or more objects in an image. One of the methods includes: receiving object classification results of the image from one or more classification engines, the object classification results comprise classification of one or more objects and confidence scores associated with the one or more objects; aggregating the object classification results from the one or more classification engines to generate a list of confidence scores associated with each of the one or more objects, the list of confidence scores comprises one or more confidence scores from one or more classification engines; calculating an overall certainty score for each of the one or more objects based at least on the list of confidence scores; and generating a first orchestrated classification result based the overall certainty score for each of the one or more object.
System And Method For Neural Network Orchestration
Methods and systems for training an engine prediction neural network is disclosed. One of the methods can include: extracting image features of a first ground truth image using outputs of one or more layers of an image classification neural network; classifying the first ground truth image using a plurality of candidate neural networks; determining a classification accuracy score of a classification result of the first ground truth image for each candidate neural network of the plurality of candidate neural networks; and training the engine prediction neural network to predict the best candidate engine by associating the image features of the first ground truth image with the classification accuracy score of each candidate neural network.
System And Method For Neural Network Orchestration
Methods and systems for classifying a multimedia file using interclass data is disclosed. One of the methods can use classification results from one or more engines of different classes to select a different engine for the original classification task. For example, given an audio segment with associated metadata and image data, the disclosed interclass method can use the classification results from a topic classification of metadata and/or an image classification result of the image data as inputs for selecting a new transcription engine to transcribe the audio segment.
System And Method For Neural Network Orchestration
Methods and systems for classifying a multimedia file using interclass data is disclosed. One of the methods includes receiving, from a first transcription engine, one or more transcription results of one or more audio segments of the multimedia file; identifying a first transcription result for a first audio segment having a low confidence of accuracy; identifying a first image data of the multimedia file corresponding to the first segment; receiving, from an image classification engine trained to classify image data, an image classification result of one or more portions of the first image data in response to requesting the image classification engine to classify the first image data; and selecting, based at least on the image classification result of the one or more portions of the first image data, a second transcription engine to re-classify the first audio segment.
Kaiser Permanente Medical GroupKaiser Permanente Medical Center 10050 N Wolfe Rd STE SW1190, Cupertino, CA 95014 4082366160 (phone), 4082366152 (fax)
Education:
Medical School China Med Univ, Shenyang City, Liaoning, China Graduated: 1999
Languages:
English Spanish
Description:
Dr. Zhao graduated from the China Med Univ, Shenyang City, Liaoning, China in 1999. She works in Cupertino, CA and specializes in Occupational Medicine. Dr. Zhao is affiliated with Kaiser Permanente Oakland Medical Center.